Skip to main content

Code Analysis For Dubbo Plugin

· 22 min read
Apache ShenYu Committer

Apache ShenYu is an asynchronous, high-performance, cross-language, responsive API gateway.

The Apache ShenYu gateway uses the dubbo plugin to make calls to the dubbo service. You can see the official documentation Dubbo Quick Start to learn how to use the plugin.

This article is based on shenyu-2.4.3 version for source code analysis, please refer to Dubbo Service Access for the introduction of the official website.

1. Service Registration#

Take the example provided on the official website shenyu-examples-dubbo. Suppose your dubbo service is defined as follows (spring-dubbo.xml).

<beans xmlns="http://www.springframework.org/schema/beans"       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"       xmlns:dubbo="http://code.alibabatech.com/schema/dubbo"       xsi:schemaLocation="http://www.springframework.org/schema/beans       http://www.springframework.org/schema/beans/spring-beans.xsd       http://code.alibabatech.com/schema/dubbo       https://code.alibabatech.com/schema/dubbo/dubbo.xsd">
    <dubbo:application name="test-dubbo-service"/>    <dubbo:registry address="${dubbo.registry.address}"/>    <dubbo:protocol name="dubbo" port="20888"/>
    <dubbo:service timeout="10000" interface="org.apache.shenyu.examples.dubbo.api.service.DubboTestService" ref="dubboTestService"/>
</beans>

Declare the application service name, register the center address, use the dubbo protocol, declare the service interface, and the corresponding interface implementation class.

/** * DubboTestServiceImpl. */@Service("dubboTestService")public class DubboTestServiceImpl implements DubboTestService {        @Override    @ShenyuDubboClient(path = "/findById", desc = "Query by Id")    public DubboTest findById(final String id) {        return new DubboTest(id, "hello world shenyu Apache, findById");    }
    //......}

In the interface implementation class, use the annotation @ShenyuDubboClient to register the service with shenyu-admin. The role of this annotation and its rationale will be analyzed later.

The configuration information in the configuration file application.yml.

server:  port: 8011  address: 0.0.0.0  servlet:    context-path: /spring:  main:    allow-bean-definition-overriding: truedubbo:  registry:    address: zookeeper://localhost:2181  # dubbo registry    shenyu:  register:    registerType: http     serverLists: http://localhost:9095     props:      username: admin       password: 123456  client:    dubbo:      props:        contextPath: /dubbo          appName: dubbo

In the configuration file, declare the registry address used by dubbo. The dubbo service registers with shenyu-admin, using the method http, and the registration address is http://localhost:9095.

See Application Client Access for more information on the use of the registration method.

1.1 Declaration of registration interface#

Use the annotation @ShenyuDubboClient to register the service to the gateway. The simple demo is as follows.

// dubbo sevice@Service("dubboTestService")public class DubboTestServiceImpl implements DubboTestService {        @Override    @ShenyuDubboClient(path = "/findById", desc = "Query by Id") // need to be registered method    public DubboTest findById(final String id) {        return new DubboTest(id, "hello world shenyu Apache, findById");    }
    //......}

annotation definition:

/** * Works on classes and methods */@Retention(RetentionPolicy.RUNTIME)@Target({ElementType.TYPE, ElementType.METHOD})@Inheritedpublic @interface ShenyuDubboClient {        //path    String path();        //rule name    String ruleName() default "";       //desc    String desc() default "";
    //enabled    boolean enabled() default true;}

1.2 Scan annotation information#

Annotation scanning is done through the ApacheDubboServiceBeanListener, which implements the ApplicationListener<ContextRefreshedEvent> interface and starts executing the event handler method when a context refresh event occurs during the Spring container startup onApplicationEvent().

During constructor instantiation.

  • Read property configuration
  • Start the thread pool
  • Start the registry for registering with shenyu-admin
public class ApacheDubboServiceBeanListener implements ApplicationListener<ContextRefreshedEvent> {
    // ......
    //Constructor    public ApacheDubboServiceBeanListener(final PropertiesConfig clientConfig, final ShenyuClientRegisterRepository shenyuClientRegisterRepository) {        //1.Read property configuration        Properties props = clientConfig.getProps();        String contextPath = props.getProperty(ShenyuClientConstants.CONTEXT_PATH);        String appName = props.getProperty(ShenyuClientConstants.APP_NAME);        if (StringUtils.isBlank(contextPath)) {            throw new ShenyuClientIllegalArgumentException("apache dubbo client must config the contextPath or appName");        }        this.contextPath = contextPath;        this.appName = appName;        this.host = props.getProperty(ShenyuClientConstants.HOST);        this.port = props.getProperty(ShenyuClientConstants.PORT);        //2.Start the thread pool        executorService = Executors.newSingleThreadExecutor(new ThreadFactoryBuilder().setNameFormat("shenyu-apache-dubbo-client-thread-pool-%d").build());        //3.Start the registry for registering with `shenyu-admin`        publisher.start(shenyuClientRegisterRepository);    }
    /**     * Context refresh event, execute method logic     */    @Override    public void onApplicationEvent(final ContextRefreshedEvent contextRefreshedEvent) {        //......    }
  • ApacheDubboServiceBeanListener#onApplicationEvent()

Rewritten method logic: read Dubbo service ServiceBean, build metadata object and URI object, and register it with shenyu-admin.

    @Override    public void onApplicationEvent(final ContextRefreshedEvent contextRefreshedEvent) {        //read ServiceBean        Map<String, ServiceBean> serviceBean = contextRefreshedEvent.getApplicationContext().getBeansOfType(ServiceBean.class);        if (serviceBean.isEmpty()) {            return;        }        //The method is guaranteed to be executed only once        if (!registered.compareAndSet(false, true)) {            return;        }        //handle metadata         for (Map.Entry<String, ServiceBean> entry : serviceBean.entrySet()) {            handler(entry.getValue());        }        //handle URI        serviceBean.values().stream().findFirst().ifPresent(bean -> {            publisher.publishEvent(buildURIRegisterDTO(bean));        });    }
  • handler()

    In the handler() method, read all methods from the serviceBean, determine if there is a ShenyuDubboClient annotation on the method, build a metadata object if it exists, and register the method with shenyu-admin through the registry.

    private void handler(final ServiceBean<?> serviceBean) {        //get proxy        Object refProxy = serviceBean.getRef();        //get class        Class<?> clazz = refProxy.getClass();        if (AopUtils.isAopProxy(refProxy)) {            clazz = AopUtils.getTargetClass(refProxy);        }        //all methods        Method[] methods = ReflectionUtils.getUniqueDeclaredMethods(clazz);        for (Method method : methods) {            //read ShenyuDubboClient annotation            ShenyuDubboClient shenyuDubboClient = method.getAnnotation(ShenyuDubboClient.class);            if (Objects.nonNull(shenyuDubboClient)) {                //build meatdata and registry                publisher.publishEvent(buildMetaDataDTO(serviceBean, shenyuDubboClient, method));            }        }    }
  • buildMetaDataDTO()

    Constructs a metadata object where the necessary information for method registration is constructed and subsequently used for selector or rule matching.

    private MetaDataRegisterDTO buildMetaDataDTO(final ServiceBean<?> serviceBean, final ShenyuDubboClient shenyuDubboClient, final Method method) {        //app name        String appName = buildAppName(serviceBean);        //path        String path = contextPath + shenyuDubboClient.path();        //desc        String desc = shenyuDubboClient.desc();        //service name        String serviceName = serviceBean.getInterface();        //rule name        String configRuleName = shenyuDubboClient.ruleName();        String ruleName = ("".equals(configRuleName)) ? path : configRuleName;        //method name         String methodName = method.getName();        //parameter Types        Class<?>[] parameterTypesClazz = method.getParameterTypes();        String parameterTypes = Arrays.stream(parameterTypesClazz).map(Class::getName).collect(Collectors.joining(","));        return MetaDataRegisterDTO.builder()                .appName(appName)                .serviceName(serviceName)                .methodName(methodName)                .contextPath(contextPath)                .host(buildHost())                .port(buildPort(serviceBean))                .path(path)                .ruleName(ruleName)                .pathDesc(desc)                .parameterTypes(parameterTypes)                .rpcExt(buildRpcExt(serviceBean)) //dubbo ext                .rpcType(RpcTypeEnum.DUBBO.getName())                .enabled(shenyuDubboClient.enabled())                .build();    }
  • buildRpcExt()

    dubbo ext information.

       private String buildRpcExt(final ServiceBean serviceBean) {       DubboRpcExt build = DubboRpcExt.builder()               .group(StringUtils.isNotEmpty(serviceBean.getGroup()) ? serviceBean.getGroup() : "")//group               .version(StringUtils.isNotEmpty(serviceBean.getVersion()) ? serviceBean.getVersion() : "")//version               .loadbalance(StringUtils.isNotEmpty(serviceBean.getLoadbalance()) ? serviceBean.getLoadbalance() : Constants.DEFAULT_LOADBALANCE)//load balance               .retries(Objects.isNull(serviceBean.getRetries()) ? Constants.DEFAULT_RETRIES : serviceBean.getRetries())//retry               .timeout(Objects.isNull(serviceBean.getTimeout()) ? Constants.DEFAULT_CONNECT_TIMEOUT : serviceBean.getTimeout())//time               .sent(Objects.isNull(serviceBean.getSent()) ? Constants.DEFAULT_SENT : serviceBean.getSent())//sent               .cluster(StringUtils.isNotEmpty(serviceBean.getCluster()) ? serviceBean.getCluster() : Constants.DEFAULT_CLUSTER)//cluster               .url("")               .build();       return GsonUtils.getInstance().toJson(build);   }
  • buildURIRegisterDTO()

    Construct URI objects to register information about the service itself, which can be subsequently used for service probing live.

private URIRegisterDTO buildURIRegisterDTO(final ServiceBean serviceBean) {        return URIRegisterDTO.builder()                .contextPath(this.contextPath) //context path                .appName(buildAppName(serviceBean))//app name                .rpcType(RpcTypeEnum.DUBBO.getName())//dubbo                .host(buildHost()) //host                .port(buildPort(serviceBean))//port                .build(); }

The specific registration logic is implemented by the registration center, please refer to Client Access Principles .

//To the registration center, post registration events   publisher.publishEvent();

1.3 Processing registration information#

The metadata and URI data registered by the client through the registry are processed at the shenyu-admin end, which is responsible for storing to the database and synchronizing to the shenyu gateway. The client-side registration processing logic of the Dubbo plugin is in the ShenyuClientRegisterDubboServiceImpl. The inheritance relationship is as follows.

  • ShenyuClientRegisterService: client registration service, top-level interface.
  • FallbackShenyuClientRegisterService: registration failure, provides retry operation.
  • AbstractShenyuClientRegisterServiceImpl: abstract class, implements part of the public registration logic.
  • ShenyuClientRegisterDubboServiceImpl: implementation of the Dubbo plugin registration.
1.3.1 Registration Service#
  • org.apache.shenyu.admin.service.register.AbstractShenyuClientRegisterServiceImpl#register()

    The metadata MetaDataRegisterDTO object registered by the client through the registry is picked up and dropped in the register() method of shenyu-admin.

   @Override    public String register(final MetaDataRegisterDTO dto) {        //1. register selector        String selectorHandler = selectorHandler(dto);        String selectorId = selectorService.registerDefault(dto, PluginNameAdapter.rpcTypeAdapter(rpcType()), selectorHandler);        //2. register rule        String ruleHandler = ruleHandler();        RuleDTO ruleDTO = buildRpcDefaultRuleDTO(selectorId, dto, ruleHandler);        ruleService.registerDefault(ruleDTO);        //3. register metadata        registerMetadata(dto);        //4. register contextPath        String contextPath = dto.getContextPath();        if (StringUtils.isNotEmpty(contextPath)) {            registerContextPath(dto);        }        return ShenyuResultMessage.SUCCESS;    }
1.3.1.1 Register Selector#
  • org.apache.shenyu.admin.service.impl.SelectorServiceImpl#registerDefault()

Construct contextPath, find if the selector information exists, if it does, return id; if it doesn't, create the default selector information.

    @Override    public String registerDefault(final MetaDataRegisterDTO dto, final String pluginName, final String selectorHandler) {        // build contextPath        String contextPath = ContextPathUtils.buildContextPath(dto.getContextPath(), dto.getAppName());        // Find if selector information exists by name        SelectorDO selectorDO = findByNameAndPluginName(contextPath, pluginName);        if (Objects.isNull(selectorDO)) {            // Create a default selector message if it does not exist            return registerSelector(contextPath, pluginName, selectorHandler);        }        return selectorDO.getId();    }
  • Default selector information

    Construct the default selector information and its conditional properties here.

   //register selector   private String registerSelector(final String contextPath, final String pluginName, final String selectorHandler) {        //build selector        SelectorDTO selectorDTO = buildSelectorDTO(contextPath, pluginMapper.selectByName(pluginName).getId());        selectorDTO.setHandle(selectorHandler);        //register default selector        return registerDefault(selectorDTO);    }     //build selector    private SelectorDTO buildSelectorDTO(final String contextPath, final String pluginId) {        //build default        SelectorDTO selectorDTO = buildDefaultSelectorDTO(contextPath);        selectorDTO.setPluginId(pluginId);         //build the conditional properties of the default selector        selectorDTO.setSelectorConditions(buildDefaultSelectorConditionDTO(contextPath));        return selectorDTO;    }
  • Build default selector
private SelectorDTO buildDefaultSelectorDTO(final String name) {    return SelectorDTO.builder()            .name(name) // name            .type(SelectorTypeEnum.CUSTOM_FLOW.getCode()) // default type cutom            .matchMode(MatchModeEnum.AND.getCode()) //default match mode            .enabled(Boolean.TRUE)  //enable            .loged(Boolean.TRUE)  //log            .continued(Boolean.TRUE)             .sort(1)             .build();}
  • Build default selector conditional properties
private List<SelectorConditionDTO> buildDefaultSelectorConditionDTO(final String contextPath) {    SelectorConditionDTO selectorConditionDTO = new SelectorConditionDTO();    selectorConditionDTO.setParamType(ParamTypeEnum.URI.getName()); // default URI    selectorConditionDTO.setParamName("/");    selectorConditionDTO.setOperator(OperatorEnum.MATCH.getAlias()); // default  match    selectorConditionDTO.setParamValue(contextPath + AdminConstants.URI_SUFFIX);     return Collections.singletonList(selectorConditionDTO);}
  • Register default selector
@Overridepublic String registerDefault(final SelectorDTO selectorDTO) {    //selector information    SelectorDO selectorDO = SelectorDO.buildSelectorDO(selectorDTO);    //selector conditional properties    List<SelectorConditionDTO> selectorConditionDTOs = selectorDTO.getSelectorConditions();    if (StringUtils.isEmpty(selectorDTO.getId())) {        // insert selector information into the database        selectorMapper.insertSelective(selectorDO);          // inserting selector conditional properties to the database        selectorConditionDTOs.forEach(selectorConditionDTO -> {            selectorConditionDTO.setSelectorId(selectorDO.getId());                        selectorConditionMapper.insertSelective(SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO));        });    }    // Publish synchronization events to synchronize selection information and its conditional attributes to the gateway    publishEvent(selectorDO, selectorConditionDTOs);    return selectorDO.getId();}
1.3.1.2 Registration Rules#

In the second step of registering the service, start building the default rules and then register the rules.

@Override    public String register(final MetaDataRegisterDTO dto) {        //1. handle selector        //......                //2. handle rule                String ruleHandler = ruleHandler();        // build default rule        RuleDTO ruleDTO = buildRpcDefaultRuleDTO(selectorId, dto, ruleHandler);        // register rule        ruleService.registerDefault(ruleDTO);                //3. reigster metadata        //......                //4. register ContextPath        //......                return ShenyuResultMessage.SUCCESS;    }
  • 默认规则处理属性
    @Override    protected String ruleHandler() {        // default rule        return new DubboRuleHandle().toJson();    }

Dubbo plugin default rule handling properties.

public class DubboRuleHandle implements RuleHandle {
    /**     * dubbo version.     */    private String version;
    /**     * group.     */    private String group;
    /**     * retry.     */    private Integer retries = 0;
    /**     * loadbalance:RANDOM     */    private String loadbalance = LoadBalanceEnum.RANDOM.getName();
    /**     * timeout default 3000     */    private long timeout = Constants.TIME_OUT;}
  • build default rule
  // build default rule    private RuleDTO buildRpcDefaultRuleDTO(final String selectorId, final MetaDataRegisterDTO metaDataDTO, final String ruleHandler) {        return buildRuleDTO(selectorId, ruleHandler, metaDataDTO.getRuleName(), metaDataDTO.getPath());    }   //  build default rule    private RuleDTO buildRuleDTO(final String selectorId, final String ruleHandler, final String ruleName, final String path) {        RuleDTO ruleDTO = RuleDTO.builder()                .selectorId(selectorId)                .name(ruleName)                 .matchMode(MatchModeEnum.AND.getCode())                 .enabled(Boolean.TRUE)                 .loged(Boolean.TRUE)                 .sort(1)                .handle(ruleHandler)                .build();        RuleConditionDTO ruleConditionDTO = RuleConditionDTO.builder()                .paramType(ParamTypeEnum.URI.getName())                 .paramName("/")                .paramValue(path)                 .build();        if (path.indexOf("*") > 1) {            ruleConditionDTO.setOperator(OperatorEnum.MATCH.getAlias());         } else {            ruleConditionDTO.setOperator(OperatorEnum.EQ.getAlias());         }        ruleDTO.setRuleConditions(Collections.singletonList(ruleConditionDTO));        return ruleDTO;    }
  • org.apache.shenyu.admin.service.impl.RuleServiceImpl#registerDefault()

Registration rules: insert records to the database and publish events to the gateway for data synchronization.


    @Override    public String registerDefault(final RuleDTO ruleDTO) {        RuleDO exist = ruleMapper.findBySelectorIdAndName(ruleDTO.getSelectorId(), ruleDTO.getName());        if (Objects.nonNull(exist)) {            return "";        }
        RuleDO ruleDO = RuleDO.buildRuleDO(ruleDTO);        List<RuleConditionDTO> ruleConditions = ruleDTO.getRuleConditions();        if (StringUtils.isEmpty(ruleDTO.getId())) {            // insert rule information into the database            ruleMapper.insertSelective(ruleDO);            //insert  rule body conditional attributes into the database            ruleConditions.forEach(ruleConditionDTO -> {                ruleConditionDTO.setRuleId(ruleDO.getId());                     ruleConditionMapper.insertSelective(RuleConditionDO.buildRuleConditionDO(ruleConditionDTO));            });        }        // Publish events to the gateway for data synchronization        publishEvent(ruleDO, ruleConditions);        return ruleDO.getId();    }
1.3.1.3 Register Metadata#

Metadata is mainly used for RPC service calls.

   @Override    public String register(final MetaDataRegisterDTO dto) {        //1. register selector        //......                //2. register rule        //......                //3. register metadata        registerMetadata(dto);                //4. register ContextPath        //......                return ShenyuResultMessage.SUCCESS;    }
  • org.apache.shenyu.admin.service.register.ShenyuClientRegisterDubboServiceImpl#registerMetadata()

    Insert or update metadata and then publish sync events to the gateway.

    @Override    protected void registerMetadata(final MetaDataRegisterDTO dto) {            // get metaDataService            MetaDataService metaDataService = getMetaDataService();            MetaDataDO exist = metaDataService.findByPath(dto.getPath());            //insert or update metadata            metaDataService.saveOrUpdateMetaData(exist, dto);    }
    @Override    public void saveOrUpdateMetaData(final MetaDataDO exist, final MetaDataRegisterDTO metaDataDTO) {        DataEventTypeEnum eventType;        // DTO->DO        MetaDataDO metaDataDO = MetaDataTransfer.INSTANCE.mapRegisterDTOToEntity(metaDataDTO);        // insert data        if (Objects.isNull(exist)) {            Timestamp currentTime = new Timestamp(System.currentTimeMillis());            metaDataDO.setId(UUIDUtils.getInstance().generateShortUuid());            metaDataDO.setDateCreated(currentTime);            metaDataDO.setDateUpdated(currentTime);            metaDataMapper.insert(metaDataDO);            eventType = DataEventTypeEnum.CREATE;        } else {            // update            metaDataDO.setId(exist.getId());            metaDataMapper.update(metaDataDO);            eventType = DataEventTypeEnum.UPDATE;        }        // Publish sync events to gateway        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.META_DATA, eventType,                Collections.singletonList(MetaDataTransfer.INSTANCE.mapToData(metaDataDO))));    }
1.3.2 Register URI#
  • org.apache.shenyu.admin.service.register.FallbackShenyuClientRegisterService#registerURI()

The server side receives the URI information registered by the client and processes it.

    @Override    public String registerURI(final String selectorName, final List<URIRegisterDTO> uriList) {        String result;        String key = key(selectorName);        try {            this.removeFallBack(key);            // register URI            result = this.doRegisterURI(selectorName, uriList);            logger.info("Register success: {},{}", selectorName, uriList);        } catch (Exception ex) {            logger.warn("Register exception: cause:{}", ex.getMessage());            result = "";            // Retry after registration failure            this.addFallback(key, new FallbackHolder(selectorName, uriList));        }        return result;    }
  • org.apache.shenyu.admin.service.register.AbstractShenyuClientRegisterServiceImpl#doRegisterURI()

Get a valid URI from the URI registered by the client, update the corresponding selector handle property, and send a selector update event to the gateway.

@Override    public String doRegisterURI(final String selectorName, final List<URIRegisterDTO> uriList) {        //check        if (CollectionUtils.isEmpty(uriList)) {            return "";        }                SelectorDO selectorDO = selectorService.findByNameAndPluginName(selectorName, PluginNameAdapter.rpcTypeAdapter(rpcType()));        if (Objects.isNull(selectorDO)) {            throw new ShenyuException("doRegister Failed to execute,wait to retry.");        }        // gte valid URI        List<URIRegisterDTO> validUriList = uriList.stream().filter(dto -> Objects.nonNull(dto.getPort()) && StringUtils.isNotBlank(dto.getHost())).collect(Collectors.toList());        // build handle        String handler = buildHandle(validUriList, selectorDO);        if (handler != null) {            selectorDO.setHandle(handler);            SelectorData selectorData = selectorService.buildByName(selectorName, PluginNameAdapter.rpcTypeAdapter(rpcType()));            selectorData.setHandle(handler);            // Update the handle property of the selector to the database            selectorService.updateSelective(selectorDO);            // Send selector update events to the gateway            eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, DataEventTypeEnum.UPDATE, Collections.singletonList(selectorData)));        }        return ShenyuResultMessage.SUCCESS;    }

The source code analysis on service registration is completed as well as the analysis flow chart is as follows.

The next step is to analyze how the dubbo plugin initiates calls to the http service based on this information.

2. Service Invocation#

The dubbo plugin is the core processing plugin used by the ShenYu gateway to convert http requests into the dubbo protocol and invoke the dubbo service.

Take the case provided by the official website Quick Start with Dubbo as an example, a dubbo service is registered with shenyu-admin through the registry, and then requested through the ShenYu gateway proxy, the request is as follows.

GET http://localhost:9195/dubbo/findById?id=100Accept: application/json

The class inheritance relationship in the Dubbo plugin is as follows.

  • ShenyuPlugin: top-level interface, defining interface methods.
  • AbstractShenyuPlugin: abstract class that implements plugin common logic.
  • AbstractDubboPlugin: dubbo plugin abstract class, implementing dubbo common logic.
  • ApacheDubboPlugin: ApacheDubbo plugin.

ShenYu Gateway supports ApacheDubbo and AlibabaDubbo\

2.1 Receive requests#

After passing the ShenYu gateway proxy, the request entry is ShenyuWebHandler, which implements the org.springframework.web.server.WebHandler interface.

public final class ShenyuWebHandler implements WebHandler, ApplicationListener<SortPluginEvent> {    //......        /**     * hanlde request     */    @Override    public Mono<Void> handle(@NonNull final ServerWebExchange exchange) {       // execute default plugin chain        Mono<Void> execute = new DefaultShenyuPluginChain(plugins).execute(exchange);        if (scheduled) {            return execute.subscribeOn(scheduler);        }        return execute;    }        private static class DefaultShenyuPluginChain implements ShenyuPluginChain {
        private int index;
        private final List<ShenyuPlugin> plugins;
          DefaultShenyuPluginChain(final List<ShenyuPlugin> plugins) {            this.plugins = plugins;        }
        /**         * execute.         */        @Override        public Mono<Void> execute(final ServerWebExchange exchange) {            return Mono.defer(() -> {                if (this.index < plugins.size()) {                    // get plugin                     ShenyuPlugin plugin = plugins.get(this.index++);                    boolean skip = plugin.skip(exchange);                    if (skip) {                        // next                        return this.execute(exchange);                    }                    // execute                    return plugin.execute(exchange, this);                }                return Mono.empty();            });        }    }}

2.2 Match Rule#

  • org.apache.shenyu.plugin.base.AbstractShenyuPlugin#execute()

Execute the matching logic for selectors and rules in the execute() method.

  • Matching selectors.
  • Matching rules.
  • Execute the plugin.
@Override    public Mono<Void> execute(final ServerWebExchange exchange, final ShenyuPluginChain chain) {        // plugin name        String pluginName = named();        // plugin data        PluginData pluginData = BaseDataCache.getInstance().obtainPluginData(pluginName);        if (pluginData != null && pluginData.getEnabled()) {            // selector data            final Collection<SelectorData> selectors = BaseDataCache.getInstance().obtainSelectorData(pluginName);            if (CollectionUtils.isEmpty(selectors)) {                return handleSelectorIfNull(pluginName, exchange, chain);            }            // match selector            SelectorData selectorData = matchSelector(exchange, selectors);            if (Objects.isNull(selectorData)) {                return handleSelectorIfNull(pluginName, exchange, chain);            }            selectorLog(selectorData, pluginName);            // rule data            List<RuleData> rules = BaseDataCache.getInstance().obtainRuleData(selectorData.getId());            if (CollectionUtils.isEmpty(rules)) {                return handleRuleIfNull(pluginName, exchange, chain);            }            // match rule            RuleData rule;            if (selectorData.getType() == SelectorTypeEnum.FULL_FLOW.getCode()) {                //get last                rule = rules.get(rules.size() - 1);            } else {                rule = matchRule(exchange, rules);            }            if (Objects.isNull(rule)) {                return handleRuleIfNull(pluginName, exchange, chain);            }            ruleLog(rule, pluginName);            // execute            return doExecute(exchange, chain, selectorData, rule);        }        return chain.execute(exchange);    }

2.3 Execute GlobalPlugin#

  • org.apache.shenyu.plugin.global.GlobalPlugin#execute()

GlobalPlugin is a global plugin that constructs contextual information in the execute() method.

public class GlobalPlugin implements ShenyuPlugin {    // shenyu context    private final ShenyuContextBuilder builder;        //......        @Override    public Mono<Void> execute(final ServerWebExchange exchange, final ShenyuPluginChain chain) {       // build context information to be passed into the exchange        ShenyuContext shenyuContext = builder.build(exchange);        exchange.getAttributes().put(Constants.CONTEXT, shenyuContext);        return chain.execute(exchange);    }        //......}
  • org.apache.shenyu.plugin.global.DefaultShenyuContextBuilder#build()

Build the default context information.

public class DefaultShenyuContextBuilder implements ShenyuContextBuilder {    //......        @Override    public ShenyuContext build(final ServerWebExchange exchange) {        //build data        Pair<String, MetaData> buildData = buildData(exchange);        //wrap ShenyuContext        return decoratorMap.get(buildData.getLeft()).decorator(buildDefaultContext(exchange.getRequest()), buildData.getRight());    }        private Pair<String, MetaData> buildData(final ServerWebExchange exchange) {        //......        //get the metadata according to the requested uri        MetaData metaData = MetaDataCache.getInstance().obtain(request.getURI().getPath());        if (Objects.nonNull(metaData) && Boolean.TRUE.equals(metaData.getEnabled())) {            exchange.getAttributes().put(Constants.META_DATA, metaData);            return Pair.of(metaData.getRpcType(), metaData);        } else {            return Pair.of(RpcTypeEnum.HTTP.getName(), new MetaData());        }    }    //set the default context information    private ShenyuContext buildDefaultContext(final ServerHttpRequest request) {        String appKey = request.getHeaders().getFirst(Constants.APP_KEY);        String sign = request.getHeaders().getFirst(Constants.SIGN);        String timestamp = request.getHeaders().getFirst(Constants.TIMESTAMP);        ShenyuContext shenyuContext = new ShenyuContext();        String path = request.getURI().getPath();        shenyuContext.setPath(path);         shenyuContext.setAppKey(appKey);        shenyuContext.setSign(sign);        shenyuContext.setTimestamp(timestamp);        shenyuContext.setStartDateTime(LocalDateTime.now());        Optional.ofNullable(request.getMethod()).ifPresent(httpMethod -> shenyuContext.setHttpMethod(httpMethod.name()));        return shenyuContext;    } }
  • org.apache.shenyu.plugin.dubbo.common.context.DubboShenyuContextDecorator#decorator()

wrap ShenyuContext:

public class DubboShenyuContextDecorator implements ShenyuContextDecorator {        @Override    public ShenyuContext decorator(final ShenyuContext shenyuContext, final MetaData metaData) {        shenyuContext.setModule(metaData.getAppName());        shenyuContext.setMethod(metaData.getServiceName());         shenyuContext.setContextPath(metaData.getContextPath());         shenyuContext.setRpcType(RpcTypeEnum.DUBBO.getName());         return shenyuContext;    }        @Override    public String rpcType() {        return RpcTypeEnum.DUBBO.getName();    }}

2.4 Execute RpcParamTransformPlugin#

The RpcParamTransformPlugin is responsible for reading the parameters from the http request, saving them in the exchange and passing them to the rpc service.

  • org.apache.shenyu.plugin.base.RpcParamTransformPlugin#execute()

In the execute() method, the core logic of the plugin is executed: get the request information from exchange and process the parameters according to the form of content passed in by the request.

public class RpcParamTransformPlugin implements ShenyuPlugin {
    @Override    public Mono<Void> execute(final ServerWebExchange exchange, final ShenyuPluginChain chain) {        //get request information from exchange        ServerHttpRequest request = exchange.getRequest();        ShenyuContext shenyuContext = exchange.getAttribute(Constants.CONTEXT);        if (Objects.nonNull(shenyuContext)) {           // APPLICATION_JSON            MediaType mediaType = request.getHeaders().getContentType();            if (MediaType.APPLICATION_JSON.isCompatibleWith(mediaType)) {                return body(exchange, request, chain);            }            // APPLICATION_FORM_URLENCODED            if (MediaType.APPLICATION_FORM_URLENCODED.isCompatibleWith(mediaType)) {                return formData(exchange, request, chain);            }            //query            return query(exchange, request, chain);        }        return chain.execute(exchange);    }        //APPLICATION_JSON    private Mono<Void> body(final ServerWebExchange exchange, final ServerHttpRequest serverHttpRequest, final ShenyuPluginChain chain) {        return Mono.from(DataBufferUtils.join(serverHttpRequest.getBody())                .flatMap(body -> {                    exchange.getAttributes().put(Constants.PARAM_TRANSFORM, resolveBodyFromRequest(body));//解析body,保存到exchange中                    return chain.execute(exchange);                }));    }   // APPLICATION_FORM_URLENCODED    private Mono<Void> formData(final ServerWebExchange exchange, final ServerHttpRequest serverHttpRequest, final ShenyuPluginChain chain) {        return Mono.from(DataBufferUtils.join(serverHttpRequest.getBody())                .flatMap(map -> {                    String param = resolveBodyFromRequest(map);                    LinkedMultiValueMap<String, String> linkedMultiValueMap;                    try {                        linkedMultiValueMap = BodyParamUtils.buildBodyParams(URLDecoder.decode(param, StandardCharsets.UTF_8.name())); //格式化数据                    } catch (UnsupportedEncodingException e) {                        return Mono.error(e);                    }                    exchange.getAttributes().put(Constants.PARAM_TRANSFORM, HttpParamConverter.toMap(() -> linkedMultiValueMap));// 保存到exchange中                    return chain.execute(exchange);                }));    }    //query    private Mono<Void> query(final ServerWebExchange exchange, final ServerHttpRequest serverHttpRequest, final ShenyuPluginChain chain) {        exchange.getAttributes().put(Constants.PARAM_TRANSFORM, HttpParamConverter.ofString(() -> serverHttpRequest.getURI().getQuery()));//保存到exchange中        return chain.execute(exchange);    }    //...... }

2.5 Execute DubboPlugin#

  • org.apache.shenyu.plugin.dubbo.common.AbstractDubboPlugin#doExecute()

In the doExecute() method, the main purpose is to check the metadata and parameters.

public abstract class AbstractDubboPlugin extends AbstractShenyuPlugin {        @Override    public Mono<Void> doExecute(final ServerWebExchange exchange,                                   final ShenyuPluginChain chain,                                   final SelectorData selector,                                   final RuleData rule) {        //param        String param = exchange.getAttribute(Constants.PARAM_TRANSFORM);        //context        ShenyuContext shenyuContext = exchange.getAttribute(Constants.CONTEXT);        assert shenyuContext != null;        //metaData        MetaData metaData = exchange.getAttribute(Constants.META_DATA);        //check metaData        if (!checkMetaData(metaData)) {            LOG.error(" path is : {}, meta data have error : {}", shenyuContext.getPath(), metaData);            exchange.getResponse().setStatusCode(HttpStatus.INTERNAL_SERVER_ERROR);            Object error = ShenyuResultWrap.error(exchange, ShenyuResultEnum.META_DATA_ERROR, null);            return WebFluxResultUtils.result(exchange, error);        }        //check        if (Objects.nonNull(metaData) && StringUtils.isNoneBlank(metaData.getParameterTypes()) && StringUtils.isBlank(param)) {            exchange.getResponse().setStatusCode(HttpStatus.INTERNAL_SERVER_ERROR);            Object error = ShenyuResultWrap.error(exchange, ShenyuResultEnum.DUBBO_HAVE_BODY_PARAM, null);            return WebFluxResultUtils.result(exchange, error);        }        //set rpcContext        this.rpcContext(exchange);        //dubbo invoke        return this.doDubboInvoker(exchange, chain, selector, rule, metaData, param);    }}
  • org.apache.shenyu.plugin.apache.dubbo.ApacheDubboPlugin#doDubboInvoker()

Set special context information in the doDubboInvoker() method, and then start the dubbo generalization call.

public class ApacheDubboPlugin extends AbstractDubboPlugin {        @Override    protected Mono<Void> doDubboInvoker(final ServerWebExchange exchange,                                        final ShenyuPluginChain chain,                                        final SelectorData selector,                                        final RuleData rule,                                        final MetaData metaData,                                        final String param) {        //set the current selector and rule information, and request address for dubbo graying support        RpcContext.getContext().setAttachment(Constants.DUBBO_SELECTOR_ID, selector.getId());        RpcContext.getContext().setAttachment(Constants.DUBBO_RULE_ID, rule.getId());        RpcContext.getContext().setAttachment(Constants.DUBBO_REMOTE_ADDRESS, Objects.requireNonNull(exchange.getRequest().getRemoteAddress()).getAddress().getHostAddress());        //dubbo generic invoker        final Mono<Object> result = dubboProxyService.genericInvoker(param, metaData, exchange);        //execute next plugin in chain        return result.then(chain.execute(exchange));    }}
  • org.apache.shenyu.plugin.apache.dubbo.proxy.ApacheDubboProxyService#genericInvoker()

genericInvoker() method.

  • Gets the ReferenceConfig object.
  • Gets the generalization service GenericService object.
  • Constructs the request parameter pair object.
  • Initiates an asynchronous generalization invocation.
public class ApacheDubboProxyService {    //...... 
    /**     * Generic invoker object.     */    public Mono<Object> genericInvoker(final String body, final MetaData metaData, final ServerWebExchange exchange) throws ShenyuException {        //1.Get the ReferenceConfig object        ReferenceConfig<GenericService> reference = ApacheDubboConfigCache.getInstance().get(metaData.getPath());
        if (Objects.isNull(reference) || StringUtils.isEmpty(reference.getInterface())) {            //Failure of the current cache information            ApacheDubboConfigCache.getInstance().invalidate(metaData.getPath());            //Reinitialization with metadata            reference = ApacheDubboConfigCache.getInstance().initRef(metaData);        }        //2.Get the GenericService object of the generalization service        GenericService genericService = reference.get();        //3.Constructing the request parameter pair object        Pair<String[], Object[]> pair;        if (StringUtils.isBlank(metaData.getParameterTypes()) || ParamCheckUtils.dubboBodyIsEmpty(body)) {            pair = new ImmutablePair<>(new String[]{}, new Object[]{});        } else {            pair = dubboParamResolveService.buildParameter(body, metaData.getParameterTypes());        }        //4.Initiating asynchronous generalization calls        return Mono.fromFuture(invokeAsync(genericService, metaData.getMethodName(), pair.getLeft(), pair.getRight()).thenApply(ret -> {            //handle result            if (Objects.isNull(ret)) {                ret = Constants.DUBBO_RPC_RESULT_EMPTY;            }            exchange.getAttributes().put(Constants.RPC_RESULT, ret);            exchange.getAttributes().put(Constants.CLIENT_RESPONSE_RESULT_TYPE, ResultEnum.SUCCESS.getName());            return ret;        })).onErrorMap(exception -> exception instanceof GenericException ? new ShenyuException(((GenericException) exception).getExceptionMessage()) : new ShenyuException(exception));//处理异常    }        //Generalized calls, asynchronous operations    private CompletableFuture<Object> invokeAsync(final GenericService genericService, final String method, final String[] parameterTypes, final Object[] args) throws GenericException {        genericService.$invoke(method, parameterTypes, args);        Object resultFromFuture = RpcContext.getContext().getFuture();        return resultFromFuture instanceof CompletableFuture ? (CompletableFuture<Object>) resultFromFuture : CompletableFuture.completedFuture(resultFromFuture);    }}

Calling the dubbo service at the gateway can be achieved by generalizing the call.

The ReferenceConfig object is the key object to support generalization calls , and its initialization operation is done during data synchronization. There are two parts of data involved here, one is the synchronized plugin handler information and the other is the synchronized plugin metadata information.

  • org.apache.shenyu.plugin.dubbo.common.handler.AbstractDubboPluginDataHandler#handlerPlugin()

When the plugin data is updated, the data synchronization module synchronizes the data from shenyu-admin to the gateway. The initialization operation is performed in handlerPlugin().

public abstract class AbstractDubboPluginDataHandler implements PluginDataHandler {    //......        //Initializing the configuration cache   protected abstract void initConfigCache(DubboRegisterConfig dubboRegisterConfig);
    @Override    public void handlerPlugin(final PluginData pluginData) {        if (Objects.nonNull(pluginData) && Boolean.TRUE.equals(pluginData.getEnabled())) {            //Data deserialization            DubboRegisterConfig dubboRegisterConfig = GsonUtils.getInstance().fromJson(pluginData.getConfig(), DubboRegisterConfig.class);            DubboRegisterConfig exist = Singleton.INST.get(DubboRegisterConfig.class);            if (Objects.isNull(dubboRegisterConfig)) {                return;            }            if (Objects.isNull(exist) || !dubboRegisterConfig.equals(exist)) {                // Perform initialization operations                this.initConfigCache(dubboRegisterConfig);            }            Singleton.INST.single(DubboRegisterConfig.class, dubboRegisterConfig);        }    }    //......}
  • org.apache.shenyu.plugin.apache.dubbo.handler.ApacheDubboPluginDataHandler#initConfigCache()

Perform initialization operations.

public class ApacheDubboPluginDataHandler extends AbstractDubboPluginDataHandler {
    @Override    protected void initConfigCache(final DubboRegisterConfig dubboRegisterConfig) {        //perform initialization operations        ApacheDubboConfigCache.getInstance().init(dubboRegisterConfig);        //cached results before failure        ApacheDubboConfigCache.getInstance().invalidateAll();    }}
  • org.apache.shenyu.plugin.apache.dubbo.cache.ApacheDubboConfigCache#init()

In the initialization, set registryConfig and consumerConfig.

public final class ApacheDubboConfigCache extends DubboConfigCache {    //......     /**     * init     */    public void init(final DubboRegisterConfig dubboRegisterConfig) {        //ApplicationConfig        if (Objects.isNull(applicationConfig)) {            applicationConfig = new ApplicationConfig("shenyu_proxy");        }        //When the protocol or address changes, you need to update the registryConfig        if (needUpdateRegistryConfig(dubboRegisterConfig)) {            RegistryConfig registryConfigTemp = new RegistryConfig();            registryConfigTemp.setProtocol(dubboRegisterConfig.getProtocol());            registryConfigTemp.setId("shenyu_proxy");            registryConfigTemp.setRegister(false);            registryConfigTemp.setAddress(dubboRegisterConfig.getRegister());            Optional.ofNullable(dubboRegisterConfig.getGroup()).ifPresent(registryConfigTemp::setGroup);            registryConfig = registryConfigTemp;        }        //ConsumerConfig        if (Objects.isNull(consumerConfig)) {            consumerConfig = ApplicationModel.getConfigManager().getDefaultConsumer().orElseGet(() -> {                ConsumerConfig consumerConfig = new ConsumerConfig();                consumerConfig.refresh();                return consumerConfig;            });                       //ConsumerConfig            Optional.ofNullable(dubboRegisterConfig.getThreadpool()).ifPresent(consumerConfig::setThreadpool);             Optional.ofNullable(dubboRegisterConfig.getCorethreads()).ifPresent(consumerConfig::setCorethreads);            Optional.ofNullable(dubboRegisterConfig.getThreads()).ifPresent(consumerConfig::setThreads);            Optional.ofNullable(dubboRegisterConfig.getQueues()).ifPresent(consumerConfig::setQueues);        }    }        //Does the registration configuration need to be updated    private boolean needUpdateRegistryConfig(final DubboRegisterConfig dubboRegisterConfig) {        if (Objects.isNull(registryConfig)) {            return true;        }        return !Objects.equals(dubboRegisterConfig.getProtocol(), registryConfig.getProtocol())                || !Objects.equals(dubboRegisterConfig.getRegister(), registryConfig.getAddress())                || !Objects.equals(dubboRegisterConfig.getProtocol(), registryConfig.getProtocol());    }
    //......}
  • org.apache.shenyu.plugin.apache.dubbo.subscriber.ApacheDubboMetaDataSubscriber#onSubscribe()

When the metadata is updated, the data synchronization module synchronizes the data from shenyu-admin to the gateway. The metadata update operation is performed in the onSubscribe() method.

public class ApacheDubboMetaDataSubscriber implements MetaDataSubscriber {    //local memory cache    private static final ConcurrentMap<String, MetaData> META_DATA = Maps.newConcurrentMap();
    //update metaData    public void onSubscribe(final MetaData metaData) {        // dubbo        if (RpcTypeEnum.DUBBO.getName().equals(metaData.getRpcType())) {            //Whether the corresponding metadata exists            MetaData exist = META_DATA.get(metaData.getPath());            if (Objects.isNull(exist) || Objects.isNull(ApacheDubboConfigCache.getInstance().get(metaData.getPath()))) {                // initRef                ApacheDubboConfigCache.getInstance().initRef(metaData);            } else {                // The corresponding metadata has undergone an update operation                if (!Objects.equals(metaData.getServiceName(), exist.getServiceName())                        || !Objects.equals(metaData.getRpcExt(), exist.getRpcExt())                        || !Objects.equals(metaData.getParameterTypes(), exist.getParameterTypes())                        || !Objects.equals(metaData.getMethodName(), exist.getMethodName())) {                    //Build ReferenceConfig again based on the latest metadata                    ApacheDubboConfigCache.getInstance().build(metaData);                }            }            //local memory cache            META_DATA.put(metaData.getPath(), metaData);        }    }
    //dalete    public void unSubscribe(final MetaData metaData) {        if (RpcTypeEnum.DUBBO.getName().equals(metaData.getRpcType())) {            //使ReferenceConfig失效            ApacheDubboConfigCache.getInstance().invalidate(metaData.getPath());            META_DATA.remove(metaData.getPath());        }    }}
  • org.apache.shenyu.plugin.apache.dubbo.cache.ApacheDubboConfigCache#initRef()

Build ReferenceConfig objects from metaData.

public final class ApacheDubboConfigCache extends DubboConfigCache {    //......        public ReferenceConfig<GenericService> initRef(final MetaData metaData) {            try {                //First try to get it from the cache, and return it directly if it exists                ReferenceConfig<GenericService> referenceConfig = cache.get(metaData.getPath());                if (StringUtils.isNoneBlank(referenceConfig.getInterface())) {                    return referenceConfig;                }            } catch (ExecutionException e) {                LOG.error("init dubbo ref exception", e);            }                      //build if not exist            return build(metaData);        }
        /**         * Build reference config.         */        @SuppressWarnings("deprecation")        public ReferenceConfig<GenericService> build(final MetaData metaData) {            if (Objects.isNull(applicationConfig) || Objects.isNull(registryConfig)) {                return new ReferenceConfig<>();            }            ReferenceConfig<GenericService> reference = new ReferenceConfig<>(); //ReferenceConfig            reference.setGeneric("true"); //generic invoke            reference.setAsync(true);//async
            reference.setApplication(applicationConfig);//applicationConfig            reference.setRegistry(registryConfig);//registryConfig            reference.setConsumer(consumerConfig);//consumerConfig            reference.setInterface(metaData.getServiceName());//serviceName            reference.setProtocol("dubbo");//dubbo            reference.setCheck(false);             reference.setLoadbalance("gray");//gray
            Map<String, String> parameters = new HashMap<>(2);            parameters.put("dispatcher", "direct");            reference.setParameters(parameters);
            String rpcExt = metaData.getRpcExt();//rpc ext param            DubboParam dubboParam = parserToDubboParam(rpcExt);            if (Objects.nonNull(dubboParam)) {                if (StringUtils.isNoneBlank(dubboParam.getVersion())) {                    reference.setVersion(dubboParam.getVersion());//version                }                if (StringUtils.isNoneBlank(dubboParam.getGroup())) {                    reference.setGroup(dubboParam.getGroup());//group                }                if (StringUtils.isNoneBlank(dubboParam.getUrl())) {                    reference.setUrl(dubboParam.getUrl());//url                }                if (StringUtils.isNoneBlank(dubboParam.getCluster())) {                    reference.setCluster(dubboParam.getCluster());                }                Optional.ofNullable(dubboParam.getTimeout()).ifPresent(reference::setTimeout);//timeout                Optional.ofNullable(dubboParam.getRetries()).ifPresent(reference::setRetries);//retires                Optional.ofNullable(dubboParam.getSent()).ifPresent(reference::setSent);//Whether to ack async-sent            }            try {                //get GenericService                Object obj = reference.get();                if (Objects.nonNull(obj)) {                    LOG.info("init apache dubbo reference success there meteData is :{}", metaData);                    //cache reference                    cache.put(metaData.getPath(), reference);                }            } catch (Exception e) {                LOG.error("init apache dubbo reference exception", e);            }            return reference;        }    //......    }

2.6 Execute ResponsePlugin#

  • org.apache.shenyu.plugin.response.ResponsePlugin#execute()

The response results are handled by the ResponsePlugin plugin.

    @Override    public Mono<Void> execute(final ServerWebExchange exchange, final ShenyuPluginChain chain) {        ShenyuContext shenyuContext = exchange.getAttribute(Constants.CONTEXT);        assert shenyuContext != null;        // handle results according to rpc type        return writerMap.get(shenyuContext.getRpcType()).writeWith(exchange, chain);    }

The processing type is determined by MessageWriter and the class inheritance relationship is as follows.

  • MessageWriter: interface, defining message processing methods.
  • NettyClientMessageWriter: processing of Netty call results.
  • RPCMessageWriter: processing the results of RPC calls.
  • WebClientMessageWriter: processing the results of WebClient calls.

Dubbo service call, the processing result is RPCMessageWriter of course.

  • org.apache.shenyu.plugin.response.strategy.RPCMessageWriter#writeWith()

Process the response results in the writeWith() method.


public class RPCMessageWriter implements MessageWriter {
    @Override    public Mono<Void> writeWith(final ServerWebExchange exchange, final ShenyuPluginChain chain) {        return chain.execute(exchange).then(Mono.defer(() -> {            Object result = exchange.getAttribute(Constants.RPC_RESULT); //result            if (Objects.isNull(result)) {                 Object error = ShenyuResultWrap.error(exchange, ShenyuResultEnum.SERVICE_RESULT_ERROR, null);                return WebFluxResultUtils.result(exchange, error);            }            return WebFluxResultUtils.result(exchange, result);        }));    }}

At this point in the analysis, the source code analysis of the Dubbo plugin is complete, and the analysis flow chart is as follows.

3. Summary#

The source code analysis in this article starts from Dubbo service registration to Dubbo plug-in service calls. The Dubbo plugin is mainly used to handle the conversion of http requests to the dubbo protocol, and the main logic is implemented through generalized calls.

Register Center Source Code Analysis of Http Register

· 29 min read
Apache ShenYu Committer

Apache ShenYu is an asynchronous, high-performance, cross-language, responsive API gateway.

In ShenYu gateway, the registration center is used to register the client information to shenyu-admin, admin then synchronizes this information to the gateway through data synchronization, and the gateway completes traffic filtering through these data. The client information mainly includes interface information and URI information.

This article is based on shenyu-2.5.0 version for source code analysis, please refer to Client Access Principles for the introduction of the official website.

1. Registration Center Principle#

When the client starts, it reads the interface information and uri information, and sends the data to shenyu-admin by the specified registration type.

The registration center in the figure requires the user to specify which registration type to use. ShenYu currently supports Http, Zookeeper, Etcd, Consul and Nacos for registration. Please refer to Client Access Configuration for details on how to configure them.

ShenYu introduces Disruptor in the principle design of the registration center, in which the Disruptor queue plays a role in decoupling data and operations, which is conducive to expansion. If too many registration requests lead to registration exceptions, it also has a data buffering role.

As shown in the figure, the registration center is divided into two parts, one is the registration center client register-client, the load processing client data reading. The other is the registration center server register-server, which is loaded to handle the server side (that is shenyu-admin) data writing. Data is sent and received by specifying the registration type.

  • Client: Usually it is a microservice, which can be springmvc, spring-cloud, dubbo, grpc, etc.
  • register-client: register the central client, read the client interface and uri information.
  • Disruptor: decoupling data from operations, data buffering role.
  • register-server: registry server, here is shenyu-admin, receive data, write to database, send data synchronization events.
  • registration-type: specify the registration type, complete data registration, currently supports Http, Zookeeper, Etcd, Consul and Nacos.

This article analyzes the use of Http for registration, so the specific processing flow is as follows.

On the client side, after the data is out of the queue, the data is transferred via http and on the server side, the corresponding interface is provided to receive the data and then write it to the queue.

2. Client Registration Process#

When the client starts, it reads the attribute information according to the relevant configuration, and then writes it to the queue. Let's take the official shenyu-examples-http as an example and start the source code analysis . The official example is a microservice built by springboot. For the configuration of the registration center, please refer to the official website client access configuration .

2.1 Load configuration, read properties#

Let's start with a diagram that ties together the initialization process of the registry client.

We are analyzing registration by means of http, so the following configuration is required.

shenyu:  register:    registerType: http    serverLists: http://localhost:9095  props:    username: admin    password: 123456  client:    http:        props:          contextPath: /http          appName: http          port: 8189            isFull: false

Each attribute indicates the following meaning.

  • registerType: the service registration type, fill in http.
  • serverList: The address of the Shenyu-Admin project to fill in for the http registration type, note the addition of http:// and separate multiple addresses with English commas.
  • username: The username of the Shenyu-Admin
  • password: The password of the Shenyu-Admin
  • port: the start port of your project, currently springmvc/tars/grpc needs to be filled in.
  • contextPath: the routing prefix for your mvc project in shenyu gateway, such as /order, /product, etc. The gateway will route according to your prefix.
  • appName: the name of your application, if not configured, it will take the value of spring.application.name by default.
  • isFull: set true to proxy your entire service, false to proxy one of your controllers; currently applies to springmvc/springcloud.

After the project starts, it will first load the configuration file, read the property information and generate the corresponding Bean.

The first configuration file read is ShenyuSpringMvcClientConfiguration, which is the http registration configuration class for the shenyu client, indicated by @Configuration which is a configuration class, and by @ImportAutoConfiguration which is a configuration class. to introduce other configuration classes. Create SpringMvcClientEventListener, which mainly handles metadata and URI information.

/** * Shenyu SpringMvc Client Configuration */@Configuration@ImportAutoConfiguration(ShenyuClientCommonBeanConfiguration.class)@ConditionalOnProperty(value = "shenyu.register.enabled", matchIfMissing = true, havingValue = "true")public class ShenyuSpringMvcClientConfiguration {
    // create SpringMvcClientEventListener to handle metadata and URI    @Bean    public SpringMvcClientEventListener springHttpClientEventListener(final ShenyuClientConfig clientConfig,                                                                      final ShenyuClientRegisterRepository shenyuClientRegisterRepository) {        return new SpringMvcClientEventListener(clientConfig.getClient().get(RpcTypeEnum.HTTP.getName()), shenyuClientRegisterRepository);    }}

ShenyuClientCommonBeanConfiguration is a shenyu client common configuration class that will create the bean common to the registry client.

  • Create ShenyuClientRegisterRepository, which is created by factory class.
  • Create ShenyuRegisterCenterConfig, which reads the shenyu.register property configuration.
  • Create ShenyuClientConfig, read the shenyu.client property configuration.

/** * Shenyu Client Common Bean Configuration */@Configurationpublic class ShenyuClientCommonBeanConfiguration {       // create ShenyuClientRegisterRepository by factory     @Bean    public ShenyuClientRegisterRepository shenyuClientRegisterRepository(final ShenyuRegisterCenterConfig config) {        return ShenyuClientRegisterRepositoryFactory.newInstance(config);    }        // create ShenyuRegisterCenterConfig to read shenyu.register properties    @Bean    @ConfigurationProperties(prefix = "shenyu.register")    public ShenyuRegisterCenterConfig shenyuRegisterCenterConfig() {        return new ShenyuRegisterCenterConfig();    }      // create ShenyuClientConfig to read shenyu.client properties    @Bean    @ConfigurationProperties(prefix = "shenyu")    public ShenyuClientConfig shenyuClientConfig() {        return new ShenyuClientConfig();    }}

2.2 HttpClientRegisterRepository#

The ShenyuClientRegisterRepository generated in the configuration file above is a concrete implementation of the client registration, which is an interface with the following implementation class.

  • HttpClientRegisterRepository: registration via http.
  • ConsulClientRegisterRepository: registration via Consul.
  • EtcdClientRegisterRepository: registration via Etcd; EtcdClientRegisterRepository: registration via Etcd.
  • NacosClientRegisterRepository: registration via nacos; NacosClientRegisterRepository: registration via nacos.
  • ZookeeperClientRegisterRepository: registration through Zookeeper.

The specific way which is achieved by loading through SPI, the implementation logic is as follows.


/** * load ShenyuClientRegisterRepository */public final class ShenyuClientRegisterRepositoryFactory {        private static final Map<String, ShenyuClientRegisterRepository> REPOSITORY_MAP = new ConcurrentHashMap<>();        /**     * create ShenyuClientRegisterRepository     */    public static ShenyuClientRegisterRepository newInstance(final ShenyuRegisterCenterConfig shenyuRegisterCenterConfig) {        if (!REPOSITORY_MAP.containsKey(shenyuRegisterCenterConfig.getRegisterType())) {            // Loading by means of SPI, type determined by registerType            ShenyuClientRegisterRepository result = ExtensionLoader.getExtensionLoader(ShenyuClientRegisterRepository.class).getJoin(shenyuRegisterCenterConfig.getRegisterType());            //init ShenyuClientRegisterRepository            result.init(shenyuRegisterCenterConfig);            ShenyuClientShutdownHook.set(result, shenyuRegisterCenterConfig.getProps());            REPOSITORY_MAP.put(shenyuRegisterCenterConfig.getRegisterType(), result);            return result;        }        return REPOSITORY_MAP.get(shenyuRegisterCenterConfig.getRegisterType());    }}

The load type is specified by registerType, which is the type we specify in the configuration file at

shenyu:  register:    registerType: http    serverLists: http://localhost:9095

We specified http, so it will go to load HttpClientRegisterRepository. After the object is successfully created, the initialization method init() is executed as follows.

@Joinpublic class HttpClientRegisterRepository implements ShenyuClientRegisterRepository {
    @Override    public void init(final ShenyuRegisterCenterConfig config) {        this.username = config.getProps().getProperty(Constants.USER_NAME);        this.password = config.getProps().getProperty(Constants.PASS_WORD);        this.serverList = Lists.newArrayList(Splitter.on(",").split(config.getServerLists()));        this.setAccessToken();    }    // ......}

Read username, password and serverLists from the configuration file, the username, password and address of sheenyu-admin, in preparation for subsequent data sending. The class annotation @Join is used for SPI loading.

SPI, known as Service Provider Interface, is a service provider discovery feature built into the JDK, a mechanism for dynamic replacement discovery.

shenyu-spi is a custom SPI extension implementation for the Apache ShenYu gateway, designed and implemented with reference to Dubbo SPI extension implementation.

2.3 SpringMvcClientEventListener#

Create SpringMvcClientEventListener, which is responsible for the construction and registration of client-side metadata and URI data, and its creation is done in the configuration file.

@Configuration@ImportAutoConfiguration(ShenyuClientCommonBeanConfiguration.class)public class ShenyuSpringMvcClientConfiguration {     // ......        // create SpringMvcClientEventListener    @Bean    public SpringMvcClientEventListener springHttpClientEventListener(final ShenyuClientConfig clientConfig,                                                                      final ShenyuClientRegisterRepository shenyuClientRegisterRepository) {        return new SpringMvcClientEventListener(clientConfig.getClient().get(RpcTypeEnum.HTTP.getName()), shenyuClientRegisterRepository);    }}

SpringMvcClientEventListener implements the AbstractContextRefreshedEventListener

The AbstractContextRefreshedEventListener is an abstract class. it implements the ApplicationListener interface and overrides the onApplicationEvent() method, which is executed when a Spring event occurs. It has several implementation classes, which support different kind of RPC styles.

  • AlibabaDubboServiceBeanListener:handles Alibaba Dubbo protocol.
  • ApacheDubboServiceBeanListener:handles Apache Dubbo protocol.
  • GrpcClientEventListener:handles grpc protocol.
  • MotanServiceEventListener:handles Motan protocol.
  • SofaServiceEventListener:handles Sofa protocol.
  • SpringMvcClientEventListener:handles http protocol.
  • SpringWebSocketClientEventListener:handles Websocket protocol.
  • TarsServiceBeanEventListener:handles Tars protocol.
public abstract class AbstractContextRefreshedEventListener<T, A extends Annotation> implements ApplicationListener<ContextRefreshedEvent> {
    //......
    // Instantiation is done through the constructor    public AbstractContextRefreshedEventListener(final PropertiesConfig clientConfig,                                                 final ShenyuClientRegisterRepository shenyuClientRegisterRepository) {        // read shenyu.client.http properties        Properties props = clientConfig.getProps();        // appName         this.appName = props.getProperty(ShenyuClientConstants.APP_NAME);        // contextPath        this.contextPath = Optional.ofNullable(props.getProperty(ShenyuClientConstants.CONTEXT_PATH)).map(UriUtils::repairData).orElse("");        if (StringUtils.isBlank(appName) && StringUtils.isBlank(contextPath)) {            String errorMsg = "client register param must config the appName or contextPath";            LOG.error(errorMsg);            throw new ShenyuClientIllegalArgumentException(errorMsg);        }        this.ipAndPort = props.getProperty(ShenyuClientConstants.IP_PORT);        // host        this.host = props.getProperty(ShenyuClientConstants.HOST);        // port        this.port = props.getProperty(ShenyuClientConstants.PORT);        // publish event        publisher.start(shenyuClientRegisterRepository);    }
    // This method is executed when a context refresh event(ContextRefreshedEvent), occurs    @Override    public void onApplicationEvent(@NonNull final ContextRefreshedEvent event) {        // The contents of the method are guaranteed to be executed only once        if (!registered.compareAndSet(false, true)) {            return;        }        final ApplicationContext context = event.getApplicationContext();        // get the specific beans         Map<String, T> beans = getBeans(context);        if (MapUtils.isEmpty(beans)) {            return;        }        // build URI data and register it        publisher.publishEvent(buildURIRegisterDTO(context, beans));        // build metadata and register it        beans.forEach(this::handle);    }        @SuppressWarnings("all")    protected abstract URIRegisterDTO buildURIRegisterDTO(ApplicationContext context,                                                          Map<String, T> beans);

    protected void handle(final String beanName, final T bean) {        Class<?> clazz = getCorrectedClass(bean);        final A beanShenyuClient = AnnotatedElementUtils.findMergedAnnotation(clazz, getAnnotationType());        final String superPath = buildApiSuperPath(clazz, beanShenyuClient);        if (Objects.nonNull(beanShenyuClient) && superPath.contains("*")) {            handleClass(clazz, bean, beanShenyuClient, superPath);            return;        }        final Method[] methods = ReflectionUtils.getUniqueDeclaredMethods(clazz);        for (Method method : methods) {            handleMethod(bean, clazz, beanShenyuClient, method, superPath);        }    }
    // default implementation. build URI data and register it    protected void handleClass(final Class<?> clazz,                               final T bean,                               @NonNull final A beanShenyuClient,                               final String superPath) {        publisher.publishEvent(buildMetaDataDTO(bean, beanShenyuClient, pathJoin(contextPath, superPath), clazz, null));    }
    // default implementation. build metadata and register it    protected void handleMethod(final T bean,                                final Class<?> clazz,                                @Nullable final A beanShenyuClient,                                final Method method,                                final String superPath) {        // get the annotation        A methodShenyuClient = AnnotatedElementUtils.findMergedAnnotation(method, getAnnotationType());        if (Objects.nonNull(methodShenyuClient)) {            // 构建元数据,发送注册事件            publisher.publishEvent(buildMetaDataDTO(bean, methodShenyuClient, buildApiPath(method, superPath, methodShenyuClient), clazz, method));        }    }        protected abstract MetaDataRegisterDTO buildMetaDataDTO(T bean,                                                            @NonNull A shenyuClient,                                                            String path,                                                            Class<?> clazz,                                                            Method method);}

In the constructor, the main purpose is to read the property information and then perform the checksum.

shenyu:  client:    http:      props:        contextPath: /http        appName: http        port: 8189        isFull: false

Finally, publisher.start() is executed to start event publishing and prepare for registration.

ShenyuClientRegisterEventPublisher is implemented via singleton pattern, mainly generating metadata and URI subscribers (subsequently used for data publishing), and then starting the Disruptor queue. A common method publishEvent() is provided to publish events and send data to the Disruptor queue.


public class ShenyuClientRegisterEventPublisher {        private static final ShenyuClientRegisterEventPublisher INSTANCE = new ShenyuClientRegisterEventPublisher();
    private DisruptorProviderManage<DataTypeParent> providerManage;        public static ShenyuClientRegisterEventPublisher getInstance() {        return INSTANCE;    }        public void start(final ShenyuClientRegisterRepository shenyuClientRegisterRepository) {        RegisterClientExecutorFactory factory = new RegisterClientExecutorFactory();        factory.addSubscribers(new ShenyuClientMetadataExecutorSubscriber(shenyuClientRegisterRepository));        factory.addSubscribers(new ShenyuClientURIExecutorSubscriber(shenyuClientRegisterRepository));        providerManage = new DisruptorProviderManage(factory);        providerManage.startup();    }        public <T> void publishEvent(final DataTypeParent data) {        DisruptorProvider<DataTypeParent> provider = providerManage.getProvider();        provider.onData(data);    }}

The logic of the constructor of AbstractContextRefreshedEventListener is analyzed, it mainly reads the property configuration, creates metadata and URI subscribers, and starts the Disruptor queue.

The onApplicationEvent() method is executed when a Spring event occurs, the parameter here is ContextRefreshedEvent, which means the context refresh event.

ContextRefreshedEvent is a Spring built-in event. It is fired when the ApplicationContext is initialized or refreshed. This can also happen in the ConfigurableApplicationContext interface using the refresh() method. Initialization here means that all Beans have been successfully loaded, post-processing Beans have been detected and activated, all Singleton Beans have been pre-instantiated, and the ApplicationContext container is ready to be used.

  • SpringMvcClientEventListener: the http implementation of AbstractContextRefreshedEventListener:
public class SpringMvcClientEventListener extends AbstractContextRefreshedEventListener<Object, ShenyuSpringMvcClient> {        private final List<Class<? extends Annotation>> mappingAnnotation = new ArrayList<>(3);        private final Boolean isFull;        private final String protocol;        // 构造函数    public SpringMvcClientEventListener(final PropertiesConfig clientConfig,                                        final ShenyuClientRegisterRepository shenyuClientRegisterRepository) {        super(clientConfig, shenyuClientRegisterRepository);        Properties props = clientConfig.getProps();        // get isFull        this.isFull = Boolean.parseBoolean(props.getProperty(ShenyuClientConstants.IS_FULL, Boolean.FALSE.toString()));        // http protocol        this.protocol = props.getProperty(ShenyuClientConstants.PROTOCOL, ShenyuClientConstants.HTTP);        mappingAnnotation.add(ShenyuSpringMvcClient.class);        mappingAnnotation.add(RequestMapping.class);    }        @Override    protected Map<String, Object> getBeans(final ApplicationContext context) {        // Configuration attribute, if isFull=true, means register the whole microservice        if (Boolean.TRUE.equals(isFull)) {            getPublisher().publishEvent(MetaDataRegisterDTO.builder()                    .contextPath(getContextPath())                    .appName(getAppName())                    .path(PathUtils.decoratorPathWithSlash(getContextPath()))                    .rpcType(RpcTypeEnum.HTTP.getName())                    .enabled(true)                    .ruleName(getContextPath())                    .build());            return null;        }        // get bean with Controller annotation        return context.getBeansWithAnnotation(Controller.class);    }        @Override    protected URIRegisterDTO buildURIRegisterDTO(final ApplicationContext context,                                                 final Map<String, Object> beans) {        // ...    }        @Override    protected String buildApiSuperPath(final Class<?> clazz, @Nullable final ShenyuSpringMvcClient beanShenyuClient) {        if (Objects.nonNull(beanShenyuClient) && StringUtils.isNotBlank(beanShenyuClient.path())) {            return beanShenyuClient.path();        }        RequestMapping requestMapping = AnnotationUtils.findAnnotation(clazz, RequestMapping.class);        // Only the first path is supported temporarily        if (Objects.nonNull(requestMapping) && ArrayUtils.isNotEmpty(requestMapping.path()) && StringUtils.isNotBlank(requestMapping.path()[0])) {            return requestMapping.path()[0];        }        return "";    }        @Override    protected Class<ShenyuSpringMvcClient> getAnnotationType() {        return ShenyuSpringMvcClient.class;    }        @Override    protected void handleMethod(final Object bean, final Class<?> clazz,                                @Nullable final ShenyuSpringMvcClient beanShenyuClient,                                final Method method, final String superPath) {        // get RequestMapping annotation        final RequestMapping requestMapping = AnnotatedElementUtils.findMergedAnnotation(method, RequestMapping.class);        // get ShenyuSpringMvcClient annotation        ShenyuSpringMvcClient methodShenyuClient = AnnotatedElementUtils.findMergedAnnotation(method, ShenyuSpringMvcClient.class);        methodShenyuClient = Objects.isNull(methodShenyuClient) ? beanShenyuClient : methodShenyuClient;        // the result of ReflectionUtils#getUniqueDeclaredMethods contains method such as hashCode, wait, toSting        // add Objects.nonNull(requestMapping) to make sure not register wrong method        if (Objects.nonNull(methodShenyuClient) && Objects.nonNull(requestMapping)) {            getPublisher().publishEvent(buildMetaDataDTO(bean, methodShenyuClient, buildApiPath(method, superPath, methodShenyuClient), clazz, method));        }    }        //...        // 构造元数据    @Override    protected MetaDataRegisterDTO buildMetaDataDTO(final Object bean,                                                   @NonNull final ShenyuSpringMvcClient shenyuClient,                                                   final String path, final Class<?> clazz,                                                   final Method method) {        //...    }}

The registration logic is done through publisher.publishEvent().

The Controller annotation and the RequestMapping annotation are provided by Spring, which you should be familiar with, so I won't go into details. The ShenyuSpringMvcClient annotation is provided by Apache ShenYu to register the SpringMvc client, which is defined as follows.


/** * ShenyuSpringMvcClient */@Retention(RetentionPolicy.RUNTIME)@Target({ElementType.TYPE, ElementType.METHOD})public @interface ShenyuSpringMvcClient {
    // path    @AliasFor(attribute = "path")    String value() default "";        // path    @AliasFor(attribute = "value")    String path();        // ruleName    String ruleName() default "";        // desc info    String desc() default "";
    // enabled    boolean enabled() default true;        // register MetaData     boolean  registerMetaData() default false;}

It is used as follows.

  • register the entire interface
@RestController@RequestMapping("/test")@ShenyuSpringMvcClient(path = "/test/**")  // register the entire interfacepublic class HttpTestController {    //......}
  • register current method
@RestController@RequestMapping("/order")@ShenyuSpringMvcClient(path = "/order")public class OrderController {
    /**     * Save order dto.     *     * @param orderDTO the order dto     * @return the order dto     */    @PostMapping("/save")    @ShenyuSpringMvcClient(path = "/save", desc = "Save order") // register current method    public OrderDTO save(@RequestBody final OrderDTO orderDTO) {        orderDTO.setName("hello world save order");        return orderDTO;    }
  • publisher.publishEvent()

This method sends the data to the Disruptor queue. More details about the Disruptor queue are not described here, which does not affect the flow of analyzing the registration.

When the data is sent, the consumers of the Disruptor queue will process the data for consumption.

This method sends the data to the Disruptor queue. More details about the Disruptor queue are not described here, which does not affect the flow of analyzing the registration.

  • QueueConsumer

QueueConsumer is a consumer that implements the WorkHandler interface, which is created in the providerManage.startup() logic. The WorkHandler interface is the data consumption interface for Disruptor, and the only method is onEvent().

package com.lmax.disruptor;
public interface WorkHandler<T> {    void onEvent(T event) throws Exception;}

The QueueConsumer overrides the onEvent() method, and the main logic is to generate the consumption task and then go to the thread pool to execute it.


/** *  * QueueConsumer */public class QueueConsumer<T> implements WorkHandler<DataEvent<T>> {        // ......
    @Override    public void onEvent(final DataEvent<T> t) {        if (t != null) {            // Use different thread pools based on DataEvent type            ThreadPoolExecutor executor = orderly(t);            // create queue consumption tasks via factory            QueueConsumerExecutor<T> queueConsumerExecutor = factory.create();            // set data            queueConsumerExecutor.setData(t.getData());            // help gc            t.setData(null);            // put in the thread pool to execute the consumption task            executor.execute(queueConsumerExecutor);        }    }}

QueueConsumerExecutor is the task that is executed in the thread pool, it implements the Runnable interface, and there are two specific implementation classes.

  • RegisterClientConsumerExecutor:the client-side consumer executor.
  • RegisterServerConsumerExecutor:server-side consumer executor.

As the name implies, one is responsible for handling client-side tasks, and one is responsible for handling server-side tasks (the server side is admin, which is analyzed below).

  • RegisterClientConsumerExecutor

The logic of the rewritten run() is as follows.


public final class RegisterClientConsumerExecutor<T extends DataTypeParent> extends QueueConsumerExecutor<T> {        //...... 
    @Override    public void run() {        // get data        final T data = getData();        // call the appropriate processor for processing according to the data type        subscribers.get(data.getType()).executor(Lists.newArrayList(data));    }    }

Different processors are called to perform the corresponding tasks based on different data types. There are two types of data, one is metadata, which records the client registration information. One is the URI data, which records the client service information.

public enum DataType {       META_DATA,        URI,}
  • ExecutorSubscriber#executor()

The actuator subscribers are divided into two categories, one that handles metadata and one that handles URIs. There are two on the client side and two on the server side, so there are four in total.

Here is the registration metadata information, so the execution class is ShenyuClientMetadataExecutorSubscriber.

  • ShenyuClientMetadataExecutorSubscriber#executor()

The metadata processing logic on the client side is: iterate through the metadata information and call the interface method persistInterface() to finish publishing the data.

public class ShenyuClientMetadataExecutorSubscriber implements ExecutorTypeSubscriber<MetaDataRegisterDTO> {       //......        @Override    public DataType getType() {        return DataType.META_DATA;    }        @Override    public void executor(final Collection<MetaDataRegisterDTO> metaDataRegisterDTOList) {        for (MetaDataRegisterDTO metaDataRegisterDTO : metaDataRegisterDTOList) {            // call the interface method persistInterface() to finish publishing the data            shenyuClientRegisterRepository.persistInterface(metaDataRegisterDTO);        }    }}

The two registration interfaces get the data well and call the publish() method to publish the data to the Disruptor queue.

  • ShenyuServerRegisterRepository

The ShenyuServerRegisterRepository interface is a service registration interface, which has five implementation classes, indicating five types of registration.

  • ConsulServerRegisterRepository: registration is achieved through Consul;
  • EtcdServerRegisterRepository: registration through Etcd.
  • NacosServerRegisterRepository: registration through Nacos.
  • ShenyuHttpRegistryController: registration via Http; ShenyuHttpRegistryController: registration via Http.
  • ZookeeperServerRegisterRepository: registration through Zookeeper.

As you can see from the diagram, the loading of the registry is done by means of SPI. This was mentioned earlier, and the specific class loading is done in the client-side generic configuration file by specifying the properties in the configuration file.


/** * load ShenyuClientRegisterRepository */public final class ShenyuClientRegisterRepositoryFactory {        private static final Map<String, ShenyuClientRegisterRepository> REPOSITORY_MAP = new ConcurrentHashMap<>();        /**     * create ShenyuClientRegisterRepository     */    public static ShenyuClientRegisterRepository newInstance(final ShenyuRegisterCenterConfig shenyuRegisterCenterConfig) {        if (!REPOSITORY_MAP.containsKey(shenyuRegisterCenterConfig.getRegisterType())) {            // loading by means of SPI, type determined by registerType            ShenyuClientRegisterRepository result = ExtensionLoader.getExtensionLoader(ShenyuClientRegisterRepository.class).getJoin(shenyuRegisterCenterConfig.getRegisterType());            // perform initialization operations            result.init(shenyuRegisterCenterConfig);            ShenyuClientShutdownHook.set(result, shenyuRegisterCenterConfig.getProps());            REPOSITORY_MAP.put(shenyuRegisterCenterConfig.getRegisterType(), result);            return result;        }        return REPOSITORY_MAP.get(shenyuRegisterCenterConfig.getRegisterType());    }}

The source code analysis in this article is based on the Http way of registration, so we first analyze the HttpClientRegisterRepository, and the other registration methods will be analyzed afterwards.

Registration by way of http is very simple, it is to call the tool class to send http requests. The registration metadata and URI are both called by the same method doRegister(), specifying the interface and type.

  • Constants.URI_PATH = /shenyu-client/register-metadata: the interface provided by the server for registering metadata.
  • Constants.META_PATH = /shenyu-client/register-uri: Server-side interface for registering URIs.
@Joinpublic class HttpClientRegisterRepository extends FailbackRegistryRepository {
    private static final Logger LOGGER = LoggerFactory.getLogger(HttpClientRegisterRepository.class);
    private static URIRegisterDTO uriRegisterDTO;
    private String username;
    private String password;
    private List<String> serverList;
    private String accessToken;        public HttpClientRegisterRepository() {    }        public HttpClientRegisterRepository(final ShenyuRegisterCenterConfig config) {        init(config);    }
    @Override    public void init(final ShenyuRegisterCenterConfig config) {        // admin username        this.username = config.getProps().getProperty(Constants.USER_NAME);        // admin paaword        this.password = config.getProps().getProperty(Constants.PASS_WORD);        // admin server address        this.serverList = Lists.newArrayList(Splitter.on(",").split(config.getServerLists()));        // set access token        this.setAccessToken();    }
    /**     * Persist uri.     *     * @param registerDTO the register dto     */    @Override    public void doPersistURI(final URIRegisterDTO registerDTO) {        if (RuntimeUtils.listenByOther(registerDTO.getPort())) {            return;        }        doRegister(registerDTO, Constants.URI_PATH, Constants.URI);        uriRegisterDTO = registerDTO;    }
    @Override    public void doPersistInterface(final MetaDataRegisterDTO metadata) {        doRegister(metadata, Constants.META_PATH, Constants.META_TYPE);    }
    @Override    public void close() {        if (uriRegisterDTO != null) {            uriRegisterDTO.setEventType(EventType.DELETED);            doRegister(uriRegisterDTO, Constants.URI_PATH, Constants.URI);        }    }
    private void setAccessToken() {        for (String server : serverList) {            try {                Optional<?> login = RegisterUtils.doLogin(username, password, server.concat(Constants.LOGIN_PATH));                login.ifPresent(v -> this.accessToken = String.valueOf(v));            } catch (Exception e) {                LOGGER.error("Login admin url :{} is fail, will retry. cause: {} ", server, e.getMessage());            }        }    }
    private <T> void doRegister(final T t, final String path, final String type) {        int i = 0;        // iterate through the list of admin services (admin may be clustered)        for (String server : serverList) {            i++;            String concat = server.concat(path);            try {                // 设置访问token                if (StringUtils.isBlank(accessToken)) {                    this.setAccessToken();                    if (StringUtils.isBlank(accessToken)) {                        throw new NullPointerException("accessToken is null");                    }                }                // calling the tool class to send http requests                RegisterUtils.doRegister(GsonUtils.getInstance().toJson(t), concat, type, accessToken);                return;            } catch (Exception e) {                LOGGER.error("Register admin url :{} is fail, will retry. cause:{}", server, e.getMessage());                if (i == serverList.size()) {                    throw new RuntimeException(e);                }            }        }    }}

Serialize the data and send it via OkHttp.


public final class RegisterUtils {      //...... 
    // Sending data via OkHttp    public static void doRegister(final String json, final String url, final String type) throws IOException {        if (!StringUtils.hasLength(accessToken)) {            LOGGER.error("{} client register error accessToken is null, please check the config : {} ", type, json);            return;        }        Headers headers = new Headers.Builder().add(Constants.X_ACCESS_TOKEN, accessToken).build();        String result = OkHttpTools.getInstance().post(url, json, headers);        if (Objects.equals(SUCCESS, result)) {            LOGGER.info("{} client register success: {} ", type, json);        } else {            LOGGER.error("{} client register error: {} ", type, json);        }    }}

At this point, the logic of the client registering metadata by means of http is finished. To summarize: construct metadata by reading custom annotation information, send the data to the Disruptor queue, then consume the data from the queue, put the consumer into the thread pool to execute, and finally send an http request to the admin.

Similarly, ShenyuClientURIExecutorSubscriber is the execution class of registering URI information.

  • ShenyuClientURIExecutorSubscriber#executor()

The main logic is to iterate through the URI data collection and implement data registration through the persistURI() method.


public class ShenyuClientURIExecutorSubscriber implements ExecutorTypeSubscriber<URIRegisterDTO> {        //......        @Override    public DataType getType() {        return DataType.URI;     }        // register URI    @Override    public void executor(final Collection<URIRegisterDTO> dataList) {        for (URIRegisterDTO uriRegisterDTO : dataList) {            Stopwatch stopwatch = Stopwatch.createStarted();            while (true) {                try (Socket ignored = new Socket(uriRegisterDTO.getHost(), uriRegisterDTO.getPort())) {                    break;                } catch (IOException e) {                    long sleepTime = 1000;                    // maybe the port is delay exposed                    if (stopwatch.elapsed(TimeUnit.SECONDS) > 5) {                        LOG.error("host:{}, port:{} connection failed, will retry",                                uriRegisterDTO.getHost(), uriRegisterDTO.getPort());                        // If the connection fails for a long time, Increase sleep time                        if (stopwatch.elapsed(TimeUnit.SECONDS) > 180) {                            sleepTime = 10000;                        }                    }                    try {                        TimeUnit.MILLISECONDS.sleep(sleepTime);                    } catch (InterruptedException ex) {                        ex.printStackTrace();                    }                }            }            ShenyuClientShutdownHook.delayOtherHooks();                        shenyuClientRegisterRepository.persistURI(uriRegisterDTO);        }    }}

The while(true) loop in the code is to ensure that the client has been successfully started and can connect via host and port.

The logic behind it is: add the hook function for gracefully stopping the client .

Data registration is achieved through the persistURI() method. The whole logic is also analyzed in the previous section, and ultimately it is the OkHttp client that initiates http to shenyu-admin and registers the URI by way of http.

The analysis of the registration logic of the client is finished here, and the metadata and URI data constructed are sent to the Disruptor queue, from which they are then consumed, read, and sent to admin via http.

The source code analysis of the client-side metadata and URI registration process is complete, with the following flow chart.

3. Server-side registration process#

3.1 ShenyuHttpRegistryController#

From the previous analysis, we know that the server side provides two interfaces for registration.

  • /shenyu-client/register-metadata: The interface provided by the server side is used to register metadata.
  • /shenyu-client/register-uri: The server-side interface is provided for registering URIs.

These two interfaces are located in ShenyuHttpRegistryController, which implements the ShenyuServerRegisterRepository interface and is the implementation class for server-side registration. It is marked with @Join to indicate loading via SPI.

@RequestMapping("/shenyu-client")@Joinpublic class ShenyuHttpRegistryController implements ShenyuServerRegisterRepository {
    private ShenyuServerRegisterPublisher publisher;
    @Override    public void init(final ShenyuServerRegisterPublisher publisher, final ShenyuRegisterCenterConfig config) {        this.publisher = publisher;    }        // register Metadata    @PostMapping("/register-metadata")    @ResponseBody    public String registerMetadata(@RequestBody final MetaDataRegisterDTO metaDataRegisterDTO) {        publisher.publish(metaDataRegisterDTO);        return ShenyuResultMessage.SUCCESS;    }           // register URI    @PostMapping("/register-uri")    @ResponseBody    public String registerURI(@RequestBody final URIRegisterDTO uriRegisterDTO) {        publisher.publish(uriRegisterDTO);        return ShenyuResultMessage.SUCCESS;    }}

The exact method used is specified by the configuration file and then loaded via SPI.

In the application.yml file in shenyu-admin configure the registration method, registerType specify the registration type, when registering with http, serverLists do not need to be filled in, for more configuration instructions you can refer to the official website Client Access Configuration.

shenyu:  register:    registerType: http     serverLists: 
  • RegisterCenterConfiguration

After introducing the relevant dependencies and properties configuration, when starting shenyu-admin, the configuration file will be loaded first, and the configuration file class related to the registration center is RegisterCenterConfiguration.

@Configurationpublic class RegisterCenterConfiguration {    @Bean    @ConfigurationProperties(prefix = "shenyu.register")    public ShenyuRegisterCenterConfig shenyuRegisterCenterConfig() {        return new ShenyuRegisterCenterConfig();    }        //create ShenyuServerRegisterRepository to register in admin    @Bean(destroyMethod = "close")    public ShenyuServerRegisterRepository shenyuServerRegisterRepository(final ShenyuRegisterCenterConfig shenyuRegisterCenterConfig, final List<ShenyuClientRegisterService> shenyuClientRegisterService) {        // 1. get the registration type from the configuration property        String registerType = shenyuRegisterCenterConfig.getRegisterType();        // 2. load the implementation class by registering the type with the SPI method        ShenyuServerRegisterRepository registerRepository = ExtensionLoader.getExtensionLoader(ShenyuServerRegisterRepository.class).getJoin(registerType);        // 3. get the publisher and write data to the Disruptor queue        RegisterServerDisruptorPublisher publisher = RegisterServerDisruptorPublisher.getInstance();        // 4. ShenyuClientRegisterService, rpcType -> registerService        Map<String, ShenyuClientRegisterService> registerServiceMap = shenyuClientRegisterService.stream().collect(Collectors.toMap(ShenyuClientRegisterService::rpcType, e -> e));        // 5. start publisher        publisher.start(registerServiceMap);        // 6. init registerRepository        registerRepository.init(publisher, shenyuRegisterCenterConfig);        return registerRepository;    }}

Two beans are generated in the configuration class.

  • shenyuRegisterCenterConfig: to read the attribute configuration.

  • shenyuServerRegisterRepository: for server-side registration.

In the process of creating shenyuServerRegisterRepository, a series of preparations are also performed.

    1. get the registration type from the configuration property.
    1. Load the implementation class by the registration type with the SPI method: for example, if the specified type is http, ShenyuHttpRegistryController will be loaded.
    1. Get publisher and write data to the Disruptor queue.
    1. Register Service, rpcType -> registerService: get the registered Service, each rpc has a corresponding Service. The client for this article is built through springboot, which belongs to the http type, and other client types: dubbo, Spring Cloud, gRPC, etc.
    1. Preparation for event publishing: add server-side metadata and URI subscribers, process the data. And start the Disruptor queue.
    1. Initialization operation for registration: http type registration initialization operation is to save publisher.
  • RegisterClientServerDisruptorPublisher#publish()

The server-side publisher that writes data to the Disruptor queue , built via the singleton pattern.


public class RegisterClientServerDisruptorPublisher implements ShenyuServerRegisterPublisher {    private static final RegisterClientServerDisruptorPublisher INSTANCE = new     private static final RegisterClientServerDisruptorPublisher INSTANCE = new RegisterServerDisruptorPublisher();();
    public static RegisterClientServerDisruptorPublisher getInstance() {        return INSTANCE;    }       //prepare for event publishing, add server-side metadata and URI subscribers, process data. And start the Disruptor queue.    public void start(final Map<String, ShenyuClientRegisterService> shenyuClientRegisterService) {        RegisterServerExecutorFactory factory = new RegisterServerExecutorFactory();        // add URI data subscriber        factory.addSubscribers(new URIRegisterExecutorSubscriber(shenyuClientRegisterService));        // add Metadata subscriber        factory.addSubscribers(new MetadataExecutorSubscriber(shenyuClientRegisterService));        //start Disruptor        providerManage = new DisruptorProviderManage(factory);        providerManage.startup();    }        // write data to queue    @Override    public <T> void publish(final DataTypeParent data) {        DisruptorProvider<Object> provider = providerManage.getProvider();        provider.onData(Collections.singleton(data));    }
    // write data to queue on batch    @Override    public void publish(final Collection<? extends DataTypeParent> dataList) {        DisruptorProvider<Collection<DataTypeParent>> provider = providerManage.getProvider();        provider.onData(dataList.stream().map(DataTypeParent.class::cast).collect(Collectors.toList()));    }        @Override    public void close() {        providerManage.getProvider().shutdown();    }}

The loading of the configuration file, which can be seen as the initialization process of the registry server, is described in the following diagram.

3.2 QueueConsumer#

In the previous analysis of the client-side disruptor queue consumption of data over. The server side has the same logic, except that the executor performing the task changes.

The QueueConsumer is a consumer that implements the WorkHandler interface, which is created in the providerManage.startup() logic. The WorkHandler interface is the data consumption interface for disruptor, and the only method is onEvent().

package com.lmax.disruptor;
public interface WorkHandler<T> {    void onEvent(T var1) throws Exception;}

The QueueConsumer overrides the onEvent() method, and the main logic is to generate the consumption task and then go to the thread pool to execute it.

/** *  * QueueConsumer */public class QueueConsumer<T> implements WorkHandler<DataEvent<T>> {        // ......
    @Override    public void onEvent(final DataEvent<T> t) {        if (t != null) {            // Use different thread pools based on DataEvent type            ThreadPoolExecutor executor = orderly(t);            // create queue consumption tasks via factory            QueueConsumerExecutor<T> queueConsumerExecutor = factory.create();            // set data            queueConsumerExecutor.setData(t.getData());            // help gc            t.setData(null);            // put in the thread pool to execute the consumption task            executor.execute(queueConsumerExecutor);        }    }}

QueueConsumerExecutor is the task that is executed in the thread pool, it implements the Runnable interface, and there are two specific implementation classes.

  • RegisterClientConsumerExecutor: the client-side consumer executor.
  • RegisterServerConsumerExecutor: server-side consumer executor.

As the name implies, one is responsible for handling client-side tasks and one is responsible for handling server-side tasks.

  • RegisterServerConsumerExecutor#run()

RegisterServerConsumerExecutor is a server-side consumer executor that indirectly implements the Runnable interface via QueueConsumerExecutor and overrides the run() method.


public final class RegisterServerConsumerExecutor extends QueueConsumerExecutor<List<DataTypeParent>> {   // ...
    @Override    public void run() {        //get the data from the disruptor queue and check data        Collection<DataTypeParent> results = getData()                .stream()                .filter(this::isValidData)                .collect(Collectors.toList());        if (CollectionUtils.isEmpty(results)) {            return;        }        //execute operations according to type        getType(results).executor(results);    }        // get subscribers by type    private ExecutorSubscriber<DataTypeParent> selectExecutor(final Collection<DataTypeParent> list) {        final Optional<DataTypeParent> first = list.stream().findFirst();        return subscribers.get(first.orElseThrow(() -> new RuntimeException("the data type is not found")).getType());    }}
  • ExecutorSubscriber#executor()

The actuator subscribers are divided into two categories, one that handles metadata and one that handles URIs. There are two on the client side and two on the server side, so there are four in total.

  • MetadataExecutorSubscriber#executor()

In case of registering metadata, this is achieved by MetadataExecutorSubscriber#executor(): get the registered Service according to the type and call register().

public class MetadataExecutorSubscriber implements ExecutorTypeSubscriber<MetaDataRegisterDTO> {     //......
    @Override    public DataType getType() {        return DataType.META_DATA;     }
    @Override    public void executor(final Collection<MetaDataRegisterDTO> metaDataRegisterDTOList) {        // Traversing the metadata list        metaDataRegisterDTOList.forEach(meta -> {            Optional.ofNullable(this.shenyuClientRegisterService.get(meta.getRpcType())) // Get registered Service by type                    .ifPresent(shenyuClientRegisterService -> {                        // Registration of metadata, locking to ensure sequential execution and prevent concurrent errors                        synchronized (shenyuClientRegisterService) {                            shenyuClientRegisterService.register(meta);                        }                    });        });    }}
  • URIRegisterExecutorSubscriber#executor()

In case of registration metadata, this is achieved by URIRegisterExecutorSubscriber#executor(): construct URI data, find Service according to the registration type, and achieve registration by the registerURI method.


public class URIRegisterExecutorSubscriber implements ExecutorTypeSubscriber<URIRegisterDTO> {    //......        @Override    public DataType getType() {        return DataType.URI;     }        @Override    public void executor(final Collection<URIRegisterDTO> dataList) {        if (CollectionUtils.isEmpty(dataList)) {            return;        }                findService(dataList).ifPresent(service -> {            Map<String, List<URIRegisterDTO>> listMap = buildData(dataList);            listMap.forEach(service::registerURI);        });        final Map<String, List<URIRegisterDTO>> groupByRpcType = dataList.stream()                .filter(data -> StringUtils.isNotBlank(data.getRpcType()))                .collect(Collectors.groupingBy(URIRegisterDTO::getRpcType));        for (Map.Entry<String, List<URIRegisterDTO>> entry : groupByRpcType.entrySet()) {            final String rpcType = entry.getKey();            // Get registered Service by type            Optional.ofNullable(shenyuClientRegisterService.get(rpcType))                    .ifPresent(service -> {                        final List<URIRegisterDTO> list = entry.getValue();                        // Build URI data types and register them with the registerURI method                        Map<String, List<URIRegisterDTO>> listMap = buildData(list);                        listMap.forEach(service::registerURI);                    });        }    }        // Find Service by type    private Optional<ShenyuClientRegisterService> findService(final Collection<URIRegisterDTO> dataList) {        return dataList.stream().map(dto -> shenyuClientRegisterService.get(dto.getRpcType())).findFirst();    }}
  • ShenyuClientRegisterService#register()

ShenyuClientRegisterService is the registration method interface, which has several implementation classes.

  • AbstractContextPathRegisterService: abstract class, handling part of the public logic.
  • AbstractShenyuClientRegisterServiceImpl: : abstract class, handles part of the public logic.
  • ShenyuClientRegisterDivideServiceImpl: divide class, handles http registration types.
  • ShenyuClientRegisterDubboServiceImpl: dubbo class, handles dubbo registration types.
  • ShenyuClientRegisterGrpcServiceImpl: gRPC class, handles gRPC registration types.
  • ShenyuClientRegisterMotanServiceImpl: Motan class, handles Motan registration types.
  • ShenyuClientRegisterSofaServiceImpl: Sofa class, handles Sofa registration types.
  • ShenyuClientRegisterSpringCloudServiceImpl: SpringCloud class, handles SpringCloud registration types.
  • ShenyuClientRegisterTarsServiceImpl: Tars class, handles Tars registration types.
  • ShenyuClientRegisterWebSocketServiceImplWebsocket class,handles Websocket registration types.

From the above, we can see that each microservice has a corresponding registration implementation class. The source code analysis in this article is based on the official shenyu-examples-http as an example, it is of http registration type, so the registration implementation class for metadata and URI data is ShenyuClientRegisterDivideServiceImpl: ShenyuClientRegisterDivideServiceImpl.

  • register():
public abstract class AbstractShenyuClientRegisterServiceImpl extends FallbackShenyuClientRegisterService implements ShenyuClientRegisterService {
    //......
    public String register(final MetaDataRegisterDTO dto) {        // 1.register selector information        String selectorHandler = selectorHandler(dto);        String selectorId = selectorService.registerDefault(dto, PluginNameAdapter.rpcTypeAdapter(rpcType()), selectorHandler);        // 2.register rule information        String ruleHandler = ruleHandler();        RuleDTO ruleDTO = buildRpcDefaultRuleDTO(selectorId, dto, ruleHandler);        ruleService.registerDefault(ruleDTO);        // 3.register metadata information        registerMetadata(dto);        // 4.register contextPath        String contextPath = dto.getContextPath();        if (StringUtils.isNotEmpty(contextPath)) {            registerContextPath(dto);        }        return ShenyuResultMessage.SUCCESS;    }}

The whole registration logic can be divided into 4 steps.

    1. Register selector information
    1. Register rule information
    1. Register metadata information
    1. Register `contextPath

This side of admin requires the construction of selectors, rules, metadata and ContextPath through the metadata information of the client. The specific registration process and details of processing are related to the rpc type. We will not continue to track down the logical analysis of the registration center, tracking to this point is enough.

The source code of the server-side metadata registration process is analyzed and the flow chart is described as follows.

  • registerURI()
public abstract class AbstractShenyuClientRegisterServiceImpl extends FallbackShenyuClientRegisterService implements ShenyuClientRegisterService {
    //......
    public String registerURI(final String selectorName, final List<URIRegisterDTO> uriList) {        if (CollectionUtils.isEmpty(uriList)) {            return "";        }        // Does the corresponding selector exist        SelectorDO selectorDO = selectorService.findByNameAndPluginName(selectorName, PluginNameAdapter.rpcTypeAdapter(rpcType()));        if (Objects.isNull(selectorDO)) {            return "";        }        // Handle handler information in the selector        String handler = buildHandle(uriList, selectorDO);        selectorDO.setHandle(handler);        SelectorData selectorData = selectorService.buildByName(selectorName, PluginNameAdapter.rpcTypeAdapter(rpcType()));        selectorData.setHandle(handler);
        // Update records in the database        selectorService.updateSelective(selectorDO);        // publish Event to gateway        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, DataEventTypeEnum.UPDATE, Collections.singletonList(selectorData)));        return ShenyuResultMessage.SUCCESS;    }}

After admin gets the URI data, it mainly updates the handler information in the selector, then writes it to the database, and finally publishes the event notification gateway. The logic of notifying the gateway is done by the data synchronization operation, which has been analyzed in the previous article, so we will not repeat it.

The source code analysis of the server-side URI registration process is complete and is described in the following diagram.

At this point, the server-side registration process is also analyzed, mainly through the interface provided externally, accept the registration information from the client, and then write to the Disruptor queue, and then consume data from it, and update the admin selector, rules, metadata and selector handler according to the received metadata and URI data.

4. Summary#

This article focuses on the http registration module of the Apache ShenYu gateway for source code analysis. The main knowledge points involved are summarized as follows.

  • The register center is for registering client information to admin to facilitate traffic filtering.
  • http registration is to register client metadata information and URI information to admin.
  • http service access is identified by the annotation @ShenyuSpringMvcClient.
  • construction of the registration information mainly through the application listener ApplicationListener.
  • loading of the registration type is done through SPI.
  • The Disruptor queue was introduced to decouple data from operations, and data buffering.
  • The implementation of the registry uses interface-oriented programming, using design patterns such as template methods, singleton, and observer.

McpServer Plugin Source Code Analysis

· 11 min read
Apache ShenYu Contributor

In the Shenyu gateway, when you start this plugin, Shenyu becomes a fully-featured McpServer.
You can easily register a service as a tool within the Shenyu gateway by simple configuration and use the extended functions the gateway offers.

This article is based on version shenyu-2.7.0.2. Here, I will track the Shenyu Mcp plugin chain and analyze the source code of its SSE communication.

Introduction#

The Shenyu gateway's Mcp plugin is built on top of the spring-ai-mcp extension. To better understand how the Mcp plugin works, I’ll briefly introduce how some official Mcp Java classes collaborate within its JDK.

I want to start by introducing three key official Mcp Java classes:

  1. McpServer
    This class manages resources like tools, Resource, promote, etc.
  2. TransportProvider
    Provides corresponding communication methods based on client-server communication protocols.
  3. Session
    Handles request data, response data, and notifications, offers some basic methods and corresponding handlers, and executes tool queries and calls here.

1. Service Registration#

In Shenyu Admin, after filling in endpoint and tool information for the McpServer plugin, this info is automatically registered into Shenyu bootstrap.
You can refer to the official websocket data sync source code for details.

Shenyu bootstrap receives the data synced from admin in the handler() method of McpServerPluginDataHandler.

  • handlerSelector() receives URL data and creates McpServer.
  • handlerRule() receives tool info and registers tools.

These two methods together form the service registration part of the Shenyu Mcp plugin. Below, I will analyze these two methods in detail.

1.1 Transport and McpServer Registration#

Let’s analyze the handlerSelector() method, which handles McpServer registration.

  • What handlerSelector() does:
public class McpServerPluginDataHandler implements PluginDataHandler {    @Override    public void handlerSelector(final SelectorData selectorData) {        // Get URI        String uri = selectorData.getConditionList().stream()                .filter(condition -> Constants.URI.equals(condition.getParamType()))                .map(ConditionData::getParamValue)                .findFirst()                .orElse(null);                // Build McpServer        ShenyuMcpServer shenyuMcpServer = GsonUtils.getInstance().fromJson(Objects.isNull(selectorData.getHandle()) ? DEFAULT_MESSAGE_ENDPOINT : selectorData.getHandle(), ShenyuMcpServer.class);        shenyuMcpServer.setPath(path);        // Cache shenyuMcpServer        CACHED_SERVER.get().cachedHandle(                selectorData.getId(),                shenyuMcpServer);        String messageEndpoint = shenyuMcpServer.getMessageEndpoint();        // Try to get or register transportProvider        shenyuMcpServerManager.getOrCreateMcpServerTransport(uri, messageEndpoint);    }    }

ShenyuMcpServerManager is the management center of McpServer in Shenyu. It not only stores McpAsyncServer, CompositeTransportProvider, etc., but also contains methods to register Transport and McpServer.

  • The getOrCreateMcpServerTransport() method works as follows:
@Componentpublic class ShenyuMcpServerManager {    public ShenyuSseServerTransportProvider getOrCreateMcpServerTransport(final String uri, final String messageEndPoint) {        // Remove /streamablehttp and /message suffixes        String normalizedPath = processPath(uri);        return getOrCreateTransport(normalizedPath, SSE_PROTOCOL,                () -> createSseTransport(normalizedPath, messageEndPoint));    }        private <T> T getOrCreateTransport(final String normalizedPath, final String protocol,                                       final java.util.function.Supplier<T> transportFactory) {        // Get composite Transport instance        CompositeTransportProvider compositeTransport = getOrCreateCompositeTransport(normalizedPath);
        T transport = switch (protocol) {            case SSE_PROTOCOL -> (T) compositeTransport.getSseTransport();            case STREAMABLE_HTTP_PROTOCOL -> (T) compositeTransport.getStreamableHttpTransport();            default -> null;        };        // If instance is missing in cache, create a new one        if (Objects.isNull(transport)) {            // Call createSseTransport() to create and store a new transport            transport = transportFactory.get();            // Create McpAsyncServer and register the transport            addTransportToSharedServer(normalizedPath, protocol, transport);        }
        return transport;    }}
1.1.1 Transport Registration#
  • createSseTransport() method

    This method is called within getOrCreateMcpServerTransport() and is used to create a Transport

@Componentpublic class ShenyuMcpServerManager {    private ShenyuSseServerTransportProvider createSseTransport(final String normalizedPath, final String messageEndPoint) {        String messageEndpoint = normalizedPath + messageEndPoint;        ShenyuSseServerTransportProvider transportProvider = ShenyuSseServerTransportProvider.builder()                .objectMapper(objectMapper)                .sseEndpoint(normalizedPath)                .messageEndpoint(messageEndpoint)                .build();        // Register the two functions of transportProvider to the Manager's routeMap        registerRoutes(normalizedPath, messageEndpoint, transportProvider::handleSseConnection, transportProvider::handleMessage);        return transportProvider;    }}
1.1.2 McpServer Registration#
  • addTransportToSharedServer() method

    This method is called within getOrCreateMcpServerTransport() and is used to create and save McpServer

This method creates a new McpServer, stores it in sharedServerMap, and saves the TransportProvider obtained above into compositeTransportMap.

@Componentpublic class ShenyuMcpServerManager {    private void addTransportToSharedServer(final String normalizedPath, final String protocol, final Object transportProvider) {        // Get or create and register McpServer        getOrCreateSharedServer(normalizedPath);
        // Save the new transport protocol into compositeTransportMap        compositeTransport.addTransport(protocol, transportProvider);            }
    private McpAsyncServer getOrCreateSharedServer(final String normalizedPath) {        return sharedServerMap.computeIfAbsent(normalizedPath, path -> {            // Get transport protocols            CompositeTransportProvider compositeTransport = getOrCreateCompositeTransport(path);
            // Select server capabilities            var capabilities = McpSchema.ServerCapabilities.builder()                    .tools(true)                    .logging()                    .build();
            // Create and store McpServer            McpAsyncServer server = McpServer                    .async(compositeTransport)                    .serverInfo("MCP Shenyu Server (Multi-Protocol)", "1.0.0")                    .capabilities(capabilities)                    .tools(Lists.newArrayList())                    .build();                        return server;        });    }}

1.2 Tools Registration#

  • handlerRule() method works as follows:
  1. Captures the tool configuration info users fill in for the Tool, all used to build the tool
  2. Deserializes to create ShenyuMcpServerTool and obtains tool info

Note: ShenyuMcpServerTool is also a Shenyu-side object for storing tool info, unrelated by inheritance to McpServerTool

  1. Calls addTool() method to create the tool using this info and registers the tool to the matching McpServer based on SelectorId
public class McpServerPluginDataHandler implements PluginDataHandler {    @Override    public void handlerRule(final RuleData ruleData) {        Optional.ofNullable(ruleData.getHandle()).ifPresent(s -> {            // Deserialize a new ShenyuMcpServerTool            ShenyuMcpServerTool mcpServerTool = GsonUtils.getInstance().fromJson(s, ShenyuMcpServerTool.class);            // Cache mcpServerTool            CACHED_TOOL.get().cachedHandle(CacheKeyUtils.INST.getKey(ruleData), mcpServerTool);            // Build MCP schema            List<McpServerToolParameter> parameters = mcpServerTool.getParameters();            String inputSchema = JsonSchemaUtil.createParameterSchema(parameters);            ShenyuMcpServer server = CACHED_SERVER.get().obtainHandle(ruleData.getSelectorId());            if (Objects.nonNull(server)) {                // Save tool info into Manager's sharedServerMap                shenyuMcpServerManager.addTool(server.getPath(),                        StringUtils.isBlank(mcpServerTool.getName()) ? ruleData.getName()                                : mcpServerTool.getName(),                        mcpServerTool.getDescription(),                        mcpServerTool.getRequestConfig(),                        inputSchema);            }        });    }}
  • addTool() method

    This method is called by handlerRule() to add a new tool

This method performs:

  1. Converts the previous tool info into a shenyuToolDefinition object

  2. Creates a ShenyuToolCallback object using the converted shenyuToolDefinition

    ShenyuToolCallback overrides the call() method of ToolCallBack and registers this overridden method to AsyncToolSpecification, so calling the tool's call() will actually invoke this overridden method

  3. Converts ShenyuToolCallback to AsyncToolSpecification and registers it to the corresponding McpServer

public class McpServerPluginDataHandler implements PluginDataHandler {    public void addTool(final String serverPath, final String name, final String description,                        final String requestTemplate, final String inputSchema) {        String normalizedPath = normalizeServerPath(serverPath);        // Build Definition object        ToolDefinition shenyuToolDefinition = ShenyuToolDefinition.builder()                .name(name)                .description(description)                .requestConfig(requestTemplate)                .inputSchema(inputSchema)                .build();                ShenyuToolCallback shenyuToolCallback = new ShenyuToolCallback(shenyuToolDefinition);
        // Get previously registered McpServer and register the Tool        McpAsyncServer sharedServer = sharedServerMap.get(normalizedPath);        for (AsyncToolSpecification asyncToolSpecification : McpToolUtils.toAsyncToolSpecifications(shenyuToolCallback)) {            sharedServer.addTool(asyncToolSpecification).block();        }            }}

With this, service registration analysis is complete.

Service registration overview diagram

2. Plugin Execution#

Clients will send two types of messages with /sse and /message suffixes. These messages are captured by the Shenyu McpServer plugin, which handles them differently. When receiving /sse messages, the plugin creates and saves a session object, then returns a session id for /message usage. When receiving /message messages, the plugin executes methods based on the method info carried by the /message message, such as fetching work lists, tool invocation, and resource lists.

  • doExecute() method works as follows:
  1. Matches the path and checks if the Mcp plugin registered it
  2. Calls routeByProtocol() to choose the appropriate handling plan based on the request protocol

This article focuses on the SSE request mode, so we enter the handleSseRequest() method

public class McpServerPlugin extends AbstractShenyuPlugin {    @Override    protected Mono<Void> doExecute(final ServerWebExchange exchange,                                   final ShenyuPluginChain chain,                                   final SelectorData selector,                                   final RuleData rule) {        final String uri = exchange.getRequest().getURI().getRawPath();        // Check if Mcp plugin registered this route; if not, continue chain without handling        if (!shenyuMcpServerManager.canRoute(uri)) {            return chain.execute(exchange);        }        final ServerRequest request = ServerRequest.create(exchange, messageReaders);        // Choose handling method based on URI protocol        return routeByProtocol(exchange, chain, request, selector, uri);    }
    private Mono<Void> routeByProtocol(final ServerWebExchange exchange,                                       final ShenyuPluginChain chain,                                       final ServerRequest request,                                       final SelectorData selector,                                       final String uri) {
        if (isStreamableHttpProtocol(uri)) {            return handleStreamableHttpRequest(exchange, chain, request, uri);        } else if (isSseProtocol(uri)) {            // Handle SSE requests            return handleSseRequest(exchange, chain, request, selector, uri);        }     }}
  • handleSseRequest() method

    Called by routeByProtocol() to determine if the client wants to create a session or call a tool based on URI suffix

public class McpServerPlugin extends AbstractShenyuPlugin {    private Mono<Void> handleSseRequest(final ServerWebExchange exchange,                                        final ShenyuPluginChain chain,                                        final ServerRequest request,                                        final SelectorData selector,                                        final String uri) {        ShenyuMcpServer server = McpServerPluginDataHandler.CACHED_SERVER.get().obtainHandle(selector.getId());        String messageEndpoint = server.getMessageEndpoint();        // Get the transport provider        ShenyuSseServerTransportProvider transportProvider                = shenyuMcpServerManager.getOrCreateMcpServerTransport(uri, messageEndpoint);        // Determine if the request is an SSE connection or a message call        if (uri.endsWith(messageEndpoint)) {            setupSessionContext(exchange, chain);            return handleMessageEndpoint(exchange, transportProvider, request);        } else {            return handleSseEndpoint(exchange, transportProvider, request);        }    }}

2.1 Client Sends SSE Request#

If the client sends a request ending with /sse, the handleSseEndpoint() method is executed

  • handleSseEndpoint() mainly does:
  1. Sets SSE request headers
  2. Calls ShenyuSseServerTransportProvider.createSseFlux() to create the SSE stream
public class McpServerPlugin extends AbstractShenyuPlugin {    private Mono<Void> handleSseEndpoint(final ServerWebExchange exchange,                                         final ShenyuSseServerTransportProvider transportProvider,                                         final ServerRequest request) {        // Configure SSE request headers        configureSseHeaders(exchange);
        // Create SSE stream        return exchange.getResponse()                .writeWith(transportProvider                        .createSseFlux(request));    }}
  • createSseFlux() method

    Called by handleSseEndpoint(); mainly used to create and save a session

    1. Creates session; the session factory registers a series of handlers, which are the objects actually executing tool calls
    2. Saves the session for reuse
    3. Sends the session id as a parameter of the endpoint URL back to the client, to be used when calling the message endpoint
public class ShenyuSseServerTransportProvider implements McpServerTransportProvider {    public Flux<ServerSentEvent<?>> createSseFlux(final ServerRequest request) {        return Flux.<ServerSentEvent<?>>create(sink -> {                    WebFluxMcpSessionTransport sessionTransport = new WebFluxMcpSessionTransport(sink);                    // Create McpServerSession and temporarily store plugin chain info                    McpServerSession session = sessionFactory.create(sessionTransport);                    String sessionId = session.getId();                    sessions.put(sessionId, session);
                    // Send session id info back to client                    String endpointUrl = this.baseUrl + this.messageEndpoint + "?sessionId=" + sessionId;                    ServerSentEvent<String> endpointEvent = ServerSentEvent.<String>builder()                            .event(ENDPOINT_EVENT_TYPE)                            .data(endpointUrl)                            .build();                }).doOnSubscribe(subscription -> LOGGER.info("SSE Flux subscribed"))                .doOnRequest(n -> LOGGER.debug("SSE Flux requested {} items", n));    }}

2.2 Client Sends Message Request#

If the client sends a request ending with /message, the current ShenyuPluginChain info is saved into the session, and handleMessageEndpoint() is called.
Subsequent tool calls continue executing this plugin chain, so plugins after the Mcp plugin will affect tool requests.

  • handleMessageEndpoint() method, calls ShenyuSseServerTransportProvider.handleMessageEndpoint() to process
if (uri.endsWith(messageEndpoint)) {       setupSessionContext(exchange, chain);       return handleMessageEndpoint(exchange, transportProvider, request);} 
public class McpServerPlugin extends AbstractShenyuPlugin {    private Mono<Void> handleMessageEndpoint(final ServerWebExchange exchange,                                             final ShenyuSseServerTransportProvider transportProvider,                                             final ServerRequest request) {        // Handle message requests        return transportProvider.handleMessageEndpoint(request)                .flatMap(result -> {                    return exchange.getResponse()                            .writeWith(Mono.just(exchange.getResponse().bufferFactory().wrap(responseBody.getBytes())));                });    }}
  • handleMessageEndpoint() method

    Called by McpServerPlugin.handleMessageEndpoint(), hands over the request to the session for processing

The session's handler() method performs different actions depending on the message.
For example, when the method in the message is "tools/call", the tool invocation handler executes the call() method to call the tool.
The related source is omitted here.

public class ShenyuSseServerTransportProvider implements McpServerTransportProvider {    public Mono<MessageHandlingResult> handleMessageEndpoint(final ServerRequest request) {        // Get session        String sessionId = request.queryParam("sessionId").get();        McpServerSession session = sessions.get(sessionId);        return request.bodyToMono(String.class)                .flatMap(body -> {                    McpSchema.JSONRPCMessage message = McpSchema.deserializeJsonRpcMessage(objectMapper, body);                    return session.handle(message);                });    }}

At this point, the Shenyu Mcp Plugin service invocation source code analysis is complete.

Process flow overview

3. Tool Invocation#

If the client sends a message to invoke a tool, the session will use the tool invocation handler to execute the tool’s call() method.
From service registration, we know the tool call actually runs the call() method of ShenyuToolCallback.

Therefore, the tool invocation executes the following:

  • call() method mainly does:
  1. Gets session id
  2. Gets requestTemplate, the extra configuration provided by Shenyu
  3. Gets the previously stored Shenyu plugin chain and passes the tool call info to the chain for continued execution
  4. Asynchronously waits for the tool response

After the plugin chain completes, the tool call request is actually sent to the service hosting the tool.

public class ShenyuToolCallback implements ToolCallback {    @NonNull    @Override    public String call(@NonNull final String input, final ToolContext toolContext) {        // Extract sessionId from MCP request        final McpSyncServerExchange mcpExchange = extractMcpExchange(toolContext);        final String sessionId = extractSessionId(mcpExchange);        // Extract requestTemplate info        final String configStr = extractRequestConfig(shenyuTool);
        // Get the previously stored plugin chain by sessionId        final ServerWebExchange originExchange = getOriginExchange(sessionId);        final ShenyuPluginChain chain = getPluginChain(originExchange);                // Execute the tool call        return executeToolCall(originExchange, chain, sessionId, configStr, input);    }
    private String executeToolCall(final ServerWebExchange originExchange,                                   final ShenyuPluginChain chain,                                   final String sessionId,                                   final String configStr,                                   final String input) {
        final CompletableFuture<String> responseFuture = new CompletableFuture<>();        final ServerWebExchange decoratedExchange = buildDecoratedExchange(                originExchange, responseFuture, sessionId, configStr, input);        // Execute plugin chain, call the actual tool        chain.execute(decoratedExchange)                .subscribe();
        // Wait for response        final String result = responseFuture.get(DEFAULT_TIMEOUT_SECONDS, TimeUnit.SECONDS);        return result;    }}

This concludes the Shenyu MCP Plugin tool invocation analysis.


4. Summary#

This article analyzed the source code from Mcp service registration, through Mcp plugin service invocation, to tool invocation.
The McpServer plugin makes Shenyu a powerful and centralized McpServer.


Etcd Data Synchronization Source Code Analysis

· 18 min read
Apache ShenYu Contributor

Apache ShenYu is an asynchronous, high-performance, cross-language, responsive API gateway.

In ShenYu gateway, data synchronization refers to how to synchronize the updated data to the gateway after the data is sent in the background management system. The Apache ShenYu gateway currently supports data synchronization for ZooKeeper, WebSocket, http long poll, Nacos, Etcd and Consul. The main content of this article is based on Etcd data synchronization source code analysis.

This paper based on shenyu-2.4.0 version of the source code analysis, the official website of the introduction of please refer to the Data Synchronization Design .

1. About Etcd#

Etcd is a strongly consistent, distributed key-value store that provides a reliable way to store data that needs to be accessed by a distributed system or cluster of machines.

2. Admin Data Sync#

We traced the source code from a real case, such as updating a selector data in the Divide plugin to a weight of 90 in a background administration system:

2.1 Accept Data#

  • SelectorController.createSelector()

Enter the createSelector() method of the SelectorController class, which validates data, adds or updates data, and returns results.

@Validated@RequiredArgsConstructor@RestController@RequestMapping("/selector")public class SelectorController {        @PutMapping("/{id}")    public ShenyuAdminResult updateSelector(@PathVariable("id") final String id, @Valid @RequestBody final SelectorDTO selectorDTO) {        // set the current selector data ID        selectorDTO.setId(id);        // create or update operation        Integer updateCount = selectorService.createOrUpdate(selectorDTO);        // return result         return ShenyuAdminResult.success(ShenyuResultMessage.UPDATE_SUCCESS, updateCount);    }        // ......}

2.2 Handle Data#

  • SelectorServiceImpl.createOrUpdate()

Convert data in the SelectorServiceImpl class using the createOrUpdate() method, save it to the database, publish the event, update upstream.

@RequiredArgsConstructor@Servicepublic class SelectorServiceImpl implements SelectorService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;        @Override    @Transactional(rollbackFor = Exception.class)    public int createOrUpdate(final SelectorDTO selectorDTO) {        int selectorCount;        // build data DTO --> DO        SelectorDO selectorDO = SelectorDO.buildSelectorDO(selectorDTO);        List<SelectorConditionDTO> selectorConditionDTOs = selectorDTO.getSelectorConditions();        // insert or update ?        if (StringUtils.isEmpty(selectorDTO.getId())) {            //  insert into data            selectorCount = selectorMapper.insertSelective(selectorDO);            // insert into condition data            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                selectorConditionMapper.insertSelective(SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO));            });            // check selector add            if (dataPermissionMapper.listByUserId(JwtUtils.getUserInfo().getUserId()).size() > 0) {                DataPermissionDTO dataPermissionDTO = new DataPermissionDTO();                dataPermissionDTO.setUserId(JwtUtils.getUserInfo().getUserId());                dataPermissionDTO.setDataId(selectorDO.getId());                dataPermissionDTO.setDataType(AdminConstants.SELECTOR_DATA_TYPE);                dataPermissionMapper.insertSelective(DataPermissionDO.buildPermissionDO(dataPermissionDTO));            }
        } else {            // update data, delete and then insert            selectorCount = selectorMapper.updateSelective(selectorDO);            //delete rule condition then add            selectorConditionMapper.deleteByQuery(new SelectorConditionQuery(selectorDO.getId()));            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                SelectorConditionDO selectorConditionDO = SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO);                selectorConditionMapper.insertSelective(selectorConditionDO);            });        }        // publish event        publishEvent(selectorDO, selectorConditionDTOs);
        // update upstream        updateDivideUpstream(selectorDO);        return selectorCount;    }        // ......    }

In the Service class to persist data, i.e. to the database, this should be familiar, not expand. The update upstream operation is analyzed in the corresponding section below, focusing on the publish event operation, which performs data synchronization.

The logic of the publishEvent() method is to find the plugin corresponding to the selector, build the conditional data, and publish the change data.

       private void publishEvent(final SelectorDO selectorDO, final List<SelectorConditionDTO> selectorConditionDTOs) {        // find plugin of selector        PluginDO pluginDO = pluginMapper.selectById(selectorDO.getPluginId());        // build condition data        List<ConditionData> conditionDataList =                selectorConditionDTOs.stream().map(ConditionTransfer.INSTANCE::mapToSelectorDTO).collect(Collectors.toList());        // publish event        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, DataEventTypeEnum.UPDATE,                Collections.singletonList(SelectorDO.transFrom(selectorDO, pluginDO.getName(), conditionDataList))));    }

Change data released by eventPublisher.PublishEvent() is complete, the eventPublisher object is a ApplicationEventPublisher class, The fully qualified class name is org.springframework.context.ApplicationEventPublisher. Here we see that publishing data is done through Spring related functionality.

ApplicationEventPublisher

When a state change, the publisher calls ApplicationEventPublisher of publishEvent method to release an event, Spring container broadcast event for all observers, The observer's onApplicationEvent method is called to pass the event object to the observer. There are two ways to call publishEvent method, one is to implement the interface by the container injection ApplicationEventPublisher object and then call the method, the other is a direct call container, the method of two methods of publishing events not too big difference.

  • ApplicationEventPublisher: publish event;
  • ApplicationEvent: Spring event, record the event source, time, and data;
  • ApplicationListener: event listener, observer.

In Spring event publishing mechanism, there are three objects,

An object is a publish event ApplicationEventPublisher, in ShenYu through the constructor in the injected a eventPublisher.

The other object is ApplicationEvent , inherited from ShenYu through DataChangedEvent, representing the event object.

public class DataChangedEvent extends ApplicationEvent {//......}

The last object is ApplicationListener in ShenYu in through DataChangedEventDispatcher class implements this interface, as the event listener, responsible for handling the event object.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
    //......    }

2.3 Dispatch Data#

  • DataChangedEventDispatcher.onApplicationEvent()

Released when the event is completed, will automatically enter the DataChangedEventDispatcher class onApplicationEvent() method of handling events.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
  /**     * This method is called when there are data changes   * @param event     */    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)      for (DataChangedListener listener : listeners) {            // What kind of data has changed        switch (event.getGroupKey()) {                case APP_AUTH: // app auth data                    listener.onAppAuthChanged((List<AppAuthData>) event.getSource(), event.getEventType());                    break;                case PLUGIN:  // plugin data                    listener.onPluginChanged((List<PluginData>) event.getSource(), event.getEventType());                    break;                case RULE:    // rule data                    listener.onRuleChanged((List<RuleData>) event.getSource(), event.getEventType());                    break;                case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                    break;                case META_DATA:  // metadata                    listener.onMetaDataChanged((List<MetaData>) event.getSource(), event.getEventType());                    break;                default:  // other types throw exception                  throw new IllegalStateException("Unexpected value: " + event.getGroupKey());            }        }    }    }

When there is a data change, the onApplicationEvent method is called and all the data change listeners are iterated to determine the data type and handed over to the appropriate data listener for processing.

ShenYu groups all the data into five categories: APP_AUTH, PLUGIN, RULE, SELECTOR and META_DATA.

Here the data change listener (DataChangedListener) is an abstraction of the data synchronization policy. Its concrete implementation is:

These implementation classes are the synchronization strategies currently supported by ShenYu:

  • WebsocketDataChangedListener: data synchronization based on Websocket;
  • ZookeeperDataChangedListener:data synchronization based on Zookeeper;
  • ConsulDataChangedListener: data synchronization based on Consul;
  • EtcdDataDataChangedListener:data synchronization based on etcd;
  • HttpLongPollingDataChangedListener:data synchronization based on http long polling;
  • NacosDataChangedListener:data synchronization based on nacos;

Given that there are so many implementation strategies, how do you decide which to use?

Because this paper is based on Etcd data synchronization source code analysis, so here to EtcdDataDataChangedListener as an example, the analysis of how it is loaded and implemented.

A global search in the source code project shows that its implementation is done in the DataSyncConfiguration class.

/** * Data Sync Configuration * By springboot conditional assembly * The type Data sync configuration. */@Configurationpublic class DataSyncConfiguration {            /**     * The type Etcd listener.     */    @Configuration    @ConditionalOnProperty(prefix = "shenyu.sync.etcd", name = "url")    @EnableConfigurationProperties(EtcdProperties.class)    static class EtcdListener {
        @Bean        public EtcdClient etcdClient(final EtcdProperties etcdProperties) {            Client client = Client.builder()                    .endpoints(etcdProperties.getUrl())                    .build();            return new EtcdClient(client);        }
        /**         * Config event listener data changed listener.         *         * @param etcdClient the etcd client         * @return the data changed listener         */        @Bean        @ConditionalOnMissingBean(EtcdDataDataChangedListener.class)        public DataChangedListener etcdDataChangedListener(final EtcdClient etcdClient) {            return new EtcdDataDataChangedListener(etcdClient);        }
        /**         * data init.         *         * @param etcdClient        the etcd client         * @param syncDataService the sync data service         * @return the etcd data init         */        @Bean        @ConditionalOnMissingBean(EtcdDataInit.class)        public EtcdDataInit etcdDataInit(final EtcdClient etcdClient, final SyncDataService syncDataService) {            return new EtcdDataInit(etcdClient, syncDataService);        }    }        // other code is omitted......}

This configuration class is implemented through the SpringBoot conditional assembly class. The EtcdListener class has several annotations:

  • @Configuration: Configuration file, application context;

  • @ConditionalOnProperty(prefix = "shenyu.sync.etcd", name = "url"): attribute condition. The configuration class takes effect only when the condition is met. That is, when we have the following configuration, etcd is used for data synchronization.

    shenyu:    sync:     etcd:          url: localhost:2181
  • @EnableConfigurationProperties(EtcdProperties.class):import EtcdProperties; The properties in the class EtcdProperties is relative to the properties which is with shenyu.sync.etcd as prefix in the configuration file.

 @Data@ConfigurationProperties(prefix = "shenyu.sync.etcd")public class EtcdProperties {
  private String url;
  private Integer sessionTimeout;
  private Integer connectionTimeout;
  private String serializer;}

When the shenyu.sync.etcd.url property is set in the configuration file, Admin would use the etcd data synchronization, EtcdListener is generated and the beans with type EtcdClient, EtcdDataDataChangedListener and EtcdDataInit would also be generated.

  • The bean with the type EtcdClient would be generated, named etcdClient. This bean configues the connection properties of the etcd server based on the configuration file and can operate the etcdnodes directly.
  • The bean with the type EtcdDataDataChangedListener would be generated, named etcdDataDataChangedListener. This bean use the bean etcdClient as a member variable and so when the event is listened, etcdDataDataChangedListener would call the callback method and use the etcdClient to operate the etcd nodes.
  • The bean with the type EtcdDataInit would be generated, named etcdDataInit. This bean use the bean etcdClient and syncDataService as member variables, and use etcdClient to judge whether the data are initialized, if not, would use syncDataService to refresh data. We would dive into the details later.

So in the event handler onApplicationEvent(), it goes to the corresponding listener. In our case, it is a selector data update, data synchronization is etcd, so, the code will enter the EtcdDataDataChangedListener selector data change process.

    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)        for (DataChangedListener listener : listeners) {            // what kind of data has changed         switch (event.getGroupKey()) {                                    // other code logic is omitted                                    case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());   // In our case, will enter the EtcdDataDataChangedListener selector data change process                    break;         }    }

2.4 Etcd Data Changed Listener#

  • EtcdDataDataChangedListener.onSelectorChanged()

In the onSelectorChanged() method, determine the type of action, whether to refresh synchronization or update or create synchronization. Determine whether the node is in etcd based on the current selector data.


/** * EtcdDataDataChangedListener. */@Slf4jpublic class EtcdDataDataChangedListener implements DataChangedListener {    @Override    public void onSelectorChanged(final List<SelectorData> changed, final DataEventTypeEnum eventType) {        if (eventType == DataEventTypeEnum.REFRESH && !changed.isEmpty()) {            String selectorParentPath = DefaultPathConstants.buildSelectorParentPath(changed.get(0).getPluginName());            etcdClient.deleteEtcdPathRecursive(selectorParentPath);        }        for (SelectorData data : changed) {            String selectorRealPath = DefaultPathConstants.buildSelectorRealPath(data.getPluginName(), data.getId());            if (eventType == DataEventTypeEnum.DELETE) {                etcdClient.delete(selectorRealPath);                continue;            }            //create or update            updateNode(selectorRealPath, data);        }    }  }

This part is very important. The variable changed represents the SelectorData list, the variable eventType reprents the event type. When the event type is REFRESH and the SelectorData has changed, all the selector nodes under this plugin would be deleted in etcd. We should notice that the condition that the SelectorData has changed is necessary, otherwise a bug would appear that all the selector nodes would be deleted when no SelectorData data has changed.

As long as the changed data is correctly written to the etcd node, the admin side of the operation is complete.

In our current case, updating one of the selector data in the Divide plugin with a weight of 90 updates specific nodes in the graph.

We series the above update flow with a sequence diagram.

3. Gateway Data Sync#

Assume that the ShenYu gateway is already running properly, and the data synchronization mode is also etcd. How does the gateway receive and process the selector data after updating it on the admin side and sending the changed data to etcd? Let's continue our source code analysis to find out.

3.1 EtcdClient Accept Data#

  • EtcdClient.watchDataChange()

There is a EtcdSyncDataService class on the gateway, which subscribing to the data node through etcdClient and can sense when the data changes.

/** * Data synchronize of etcd. */@Slf4jpublic class EtcdSyncDataService implements SyncDataService, AutoCloseable {    private void subscribeSelectorDataChanges(final String path) {      etcdClient.watchDataChange(path, (updateNode, updateValue) -> cacheSelectorData(updateValue),              this::unCacheSelectorData);    }  //other codes omitted}

Etcd's Watch mechanism notifies subscribing clients of node changes. In our case, updating the selector information goes to the watchDataChange() method. cacheSelectorData() is used to process data.

3.2 Handle Data#

  • EtcdSyncDataService.cacheSelectorData()

The data is not null, and caching the selector data is again handled by PluginDataSubscriber.

    private void cacheSelectorData(final SelectorData selectorData) {        Optional.ofNullable(selectorData)                .ifPresent(data -> Optional.ofNullable(pluginDataSubscriber).ifPresent(e -> e.onSelectorSubscribe(data)));    }

PluginDataSubscriber is an interface, it is only a CommonPluginDataSubscriber implementation class, responsible for data processing plugin, selector and rules.

3.3 Common Plugin Data Subscriber#

  • PluginDataSubscriber.onSelectorSubscribe()

It has no additional logic and calls the subscribeDataHandler() method directly. Within methods, there are data types (plugins, selectors, or rules) and action types (update or delete) to perform different logic.

/** * The common plugin data subscriber, responsible for handling all plug-in, selector, and rule information */public class CommonPluginDataSubscriber implements PluginDataSubscriber {    //......     // handle selector data    @Override    public void onSelectorSubscribe(final SelectoData selectorData) {        subscribeDataHandler(selectorData, DataEventTypeEnum.UPDATE);    }            // A subscription data handler that handles updates or deletions of data    private <T> void subscribeDataHandler(final T classData, final DataEventTypeEnum dataType) {        Optional.ofNullable(classData).ifPresent(data -> {            // plugin data            if (data instanceof PluginData) {                PluginData pluginData = (PluginData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                     BaseDataCache.getInstance().cachePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.handlerPlugin(pluginData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.removePlugin(pluginData));                }            } else if (data instanceof SelectorData) {  // selector data                SelectorData selectorData = (SelectorData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                     Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.removeSelector(selectorData));                }            } else if (data instanceof RuleData) {  // rule data                RuleData ruleData = (RuleData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.handlerRule(ruleData));                } else if (dataType == DataEventTypeEnum.DELETE) { // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.removeRule(ruleData));                }            }        });    }    }

3.4 Data cached to Memory#

Adding a selector will enter the following logic:

// save the data to gateway memoryBaseDataCache.getInstance().cacheSelectData(selectorData);// If each plugin has its own processing logic, then do itOptional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));

One is to save the data to the gateway's memory. BaseDataCache is the class that ultimately caches data, implemented in a singleton pattern. The selector data is stored in the SELECTOR_MAP Map. In the subsequent use, also from this data.

public final class BaseDataCache {    // private instance    private static final BaseDataCache INSTANCE = new BaseDataCache();    // private constructor    private BaseDataCache() {    }        /**     * Gets instance.     *  public method     * @return the instance     */    public static BaseDataCache getInstance() {        return INSTANCE;    }        /**      * A Map of the cache selector data     * pluginName -> SelectorData.     */    private static final ConcurrentMap<String, List<SelectorData>> SELECTOR_MAP = Maps.newConcurrentMap();        public void cacheSelectData(final SelectorData selectorData) {        Optional.ofNullable(selectorData).ifPresent(this::selectorAccept);    }           /**     * cache selector data.     * @param data the selector data     */    private void selectorAccept(final SelectorData data) {        String key = data.getPluginName();        if (SELECTOR_MAP.containsKey(key)) { // Update operation, delete before insert            List<SelectorData> existList = SELECTOR_MAP.get(key);            final List<SelectorData> resultList = existList.stream().filter(r -> !r.getId().equals(data.getId())).collect(Collectors.toList());            resultList.add(data);            final List<SelectorData> collect = resultList.stream().sorted(Comparator.comparing(SelectorData::getSort)).collect(Collectors.toList());            SELECTOR_MAP.put(key, collect);        } else {  // Add new operations directly to Map            SELECTOR_MAP.put(key, Lists.newArrayList(data));        }    }    }

Second, if each plugin has its own processing logic, then do it. Through the IDEA editor, you can see that after adding a selector, there are the following plugins and processing. We're not going to expand it here.

After the above source tracking, and through a practical case, in the admin end to update a selector data, the ZooKeeper data synchronization process analysis is clear.

Let's series the data synchronization process on the gateway side through the sequence diagram:

The data synchronization process has been analyzed. In order to prevent the synchronization process from being interrupted, other logic is ignored during the analysis. We also need to analyze the process of Admin synchronization data initialization and gateway synchronization operation initialization.

4. Admin Data Sync initialization#

When admin starts, the current data will be fully synchronized to etcd, the implementation logic is as follows:


/** * EtcdDataInit. */@Slf4jpublic class EtcdDataInit implements CommandLineRunner {
  private final EtcdClient etcdClient;
  private final SyncDataService syncDataService;
  public EtcdDataInit(final EtcdClient client, final SyncDataService syncDataService) {    this.etcdClient = client;    this.syncDataService = syncDataService;  }
  @Override  public void run(final String... args) throws Exception {    final String pluginPath = DefaultPathConstants.PLUGIN_PARENT;    final String authPath = DefaultPathConstants.APP_AUTH_PARENT;    final String metaDataPath = DefaultPathConstants.META_DATA;    if (!etcdClient.exists(pluginPath) && !etcdClient.exists(authPath) && !etcdClient.exists(metaDataPath)) {      log.info("Init all data from database");      syncDataService.syncAll(DataEventTypeEnum.REFRESH);    }  }}

Check whether there is data in etcd, if not, then synchronize.

EtcdDataInit implements the CommandLineRunner interface. It is an interface provided by SpringBoot that executes the run() method after all Spring Beans initializations and is often used for initialization operations in a project.

  • SyncDataService.syncAll()

Query data from the database, and then perform full data synchronization, all authentication information, plugin information, selector information, rule information, and metadata information. Synchronous events are published primarily through eventPublisher. After publishing the event via publishEvent(), the ApplicationListener performs the event change operation. In ShenYu is mentioned in DataChangedEventDispatcher.

@Servicepublic class SyncDataServiceImpl implements SyncDataService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;         /***     * sync all data     * @param type the type     * @return     */    @Override    public boolean syncAll(final DataEventTypeEnum type) {        // app auth data        appAuthService.syncData();        // plugin data        List<PluginData> pluginDataList = pluginService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.PLUGIN, type, pluginDataList));        // selector data        List<SelectorData> selectorDataList = selectorService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, type, selectorDataList));        // rule data        List<RuleData> ruleDataList = ruleService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.RULE, type, ruleDataList));        // metadata        metaDataService.syncData();        return true;    }    }

5. Gateway Data Sync Init#

The initial operation of data synchronization on the gateway side is mainly the node in the subscription etcd. When there is a data change, the changed data will be received. This relies on the Watch mechanism of etcd. In ShenYu, the one responsible for etcd data synchronization is EtcdSyncDataService, also mentioned earlier.

The function logic of EtcdSyncDataService is completed in the process of instantiation: the subscription to Shenyu data synchronization node in etcd is completed. Subscription here is divided into two kinds, one kind is existing node data updated above, through this etcdClient.subscribeDataChanges() method; Another kind is under the current node, add or delete nodes change namely child nodes, it through etcdClient.subscribeChildChanges() method.

EtcdSyncDataService code is a bit too much, here we use plugin data read and subscribe to track, other types of data operation principle is the same.

/** * Data synchronize of etcd. */@Slf4jpublic class EtcdSyncDataService implements SyncDataService, AutoCloseable {    /**     * Instantiates a new Zookeeper cache manager.     *     * @param etcdClient             the etcd client     * @param pluginDataSubscriber the plugin data subscriber     * @param metaDataSubscribers  the meta data subscribers     * @param authDataSubscribers  the auth data subscribers     */    public EtcdSyncDataService(final EtcdClient etcdClient, final PluginDataSubscriber pluginDataSubscriber,                                    final List<MetaDataSubscriber> metaDataSubscribers, final List<AuthDataSubscriber> authDataSubscribers) {        this.etcdClient = etcdClient;        this.pluginDataSubscriber = pluginDataSubscriber;        this.metaDataSubscribers = metaDataSubscribers;        this.authDataSubscribers = authDataSubscribers;        watcherData();        watchAppAuth();        watchMetaData();    }
    private void watcherData() {        final String pluginParent = DefaultPathConstants.PLUGIN_PARENT;        List<String> pluginZKs = etcdClientGetChildren(pluginParent);        for (String pluginName : pluginZKs) {            watcherAll(pluginName);        }
        etcdClient.watchChildChange(pluginParent, (updateNode, updateValue) -> {            if (!updateNode.isEmpty()) {                watcherAll(updateNode);            }        }, null);    }
    private void watcherAll(final String pluginName) {        watcherPlugin(pluginName);        watcherSelector(pluginName);        watcherRule(pluginName);    }
    private void watcherPlugin(final String pluginName) {        String pluginPath = DefaultPathConstants.buildPluginPath(pluginName);        cachePluginData(etcdClient.get(pluginPath));        subscribePluginDataChanges(pluginPath, pluginName);    }
    private void cachePluginData(final String dataString) {        final PluginData pluginData = GsonUtils.getInstance().fromJson(dataString, PluginData.class);        Optional.ofNullable(pluginData)                .flatMap(data -> Optional.ofNullable(pluginDataSubscriber)).ifPresent(e -> e.onSubscribe(pluginData));    }
    private void subscribePluginDataChanges(final String pluginPath, final String pluginName) {    etcdClient.watchDataChange(pluginPath, (updatePath, updateValue) -> {      final String dataPath = buildRealPath(pluginPath, updatePath);      final String dataStr = etcdClient.get(dataPath);      final PluginData data = GsonUtils.getInstance().fromJson(dataStr, PluginData.class);      Optional.ofNullable(data)              .ifPresent(d -> Optional.ofNullable(pluginDataSubscriber).ifPresent(e -> e.onSubscribe(d)));    }, deleteNode -> deletePlugin(pluginName));  }  }

The above source code is given comments, I believe you can understand. The main logic for subscribing to plug-in data is as follows:

  1. Create the current plugin path
  2. Read the current node data on etcd and deserialize it
  3. The plugin data is cached in the gateway memory
  4. Subscribe to the plug-in node

6. Summary#

This paper through a practical case, etcd data synchronization principle source code analysis. The main knowledge points involved are as follows:

  • Data synchronization based on etcd is mainly implemented through watch mechanism;

  • Complete event publishing and listening via Spring;

  • Support multiple synchronization strategies through abstract DataChangedListener interface, interface oriented programming;

  • Use singleton design pattern to cache data class BaseDataCache;

  • Loading of configuration classes via conditional assembly of SpringBoot and starter loading mechanism.

Apollo Data Synchronization Source Code Analysis

· 12 min read
Apache ShenYu Contributor

This article is based on the source code analysis of version 'shenyu-2.6.1'. Please refer to the official website for an introduction Data Synchronization Design.

Admin management#

Understand the overall process through the process of adding plugins

Receive Data#

  • PluginController.createPlugin()

Enter the createPlugin() method in the PluginController class, which is responsible for data validation, adding or updating data, and returning result information.

@Validated@RequiredArgsConstructor@RestController@RequestMapping("/plugin")public class PluginController {
  @PostMapping("")  @RequiresPermissions("system:plugin:add")  public ShenyuAdminResult createPlugin(@Valid @ModelAttribute final PluginDTO pluginDTO) {      // Call pluginService.createOrUpdate for processing logic      return ShenyuAdminResult.success(pluginService.createOrUpdate(pluginDTO));  }        // ......}

Processing data#

  • PluginServiceImpl.createOrUpdate() -> PluginServiceImpl.create()

Use the create() method in the PluginServiceImpl class to convert data, save it to the database, and publish events.

@RequiredArgsConstructor@Servicepublic class PluginServiceImpl implements SelectorService {    // Event publishing object pluginEventPublisher    private final PluginEventPublisher pluginEventPublisher;
   private String create(final PluginDTO pluginDTO) {      // Check if there is a corresponding plugin      Assert.isNull(pluginMapper.nameExisted(pluginDTO.getName()), AdminConstants.PLUGIN_NAME_IS_EXIST);      // check if Customized plugin jar      if (!Objects.isNull(pluginDTO.getFile())) {        Assert.isTrue(checkFile(Base64.decode(pluginDTO.getFile())), AdminConstants.THE_PLUGIN_JAR_FILE_IS_NOT_CORRECT_OR_EXCEEDS_16_MB);      }      // Create plugin object      PluginDO pluginDO = PluginDO.buildPluginDO(pluginDTO);      // Insert object into database      if (pluginMapper.insertSelective(pluginDO) > 0) {        // publish create event. init plugin data        pluginEventPublisher.onCreated(pluginDO);      }      return ShenyuResultMessage.CREATE_SUCCESS;  }            // ......    }

Complete the data persistence operation in the PluginServiceImpl class, that is, save the data to the database and publish events through pluginEventPublisher.

The logic of the pluginEventPublisher.onCreated method is to publish the changed event:

    @Overridepublic void onCreated(final PluginDO plugin) {        // Publish DataChangeEvent events: event grouping (plugins, selectors, rules), event types (create, delete, update), changed data        publisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.PLUGIN, DataEventTypeEnum.CREATE,        Collections.singletonList(PluginTransfer.INSTANCE.mapToData(plugin))));        // Publish PluginCreatedEvent        publish(new PluginCreatedEvent(plugin, SessionUtil.visitorName()));}

Publishing change data is completed through publisher.publishEvent(), which is an 'Application EventPublisher' object with the fully qualified name of 'org. springframework. contentxt.' Application EventPublisher `. From here, we know that publishing data is accomplished through the Spring related features.

About ApplicationEventPublisher

When there is a state change, the publisher calls the publishEvent method of ApplicationEventPublisher to publish an event, the Spring container broadcasts the event to all observers, and calls the observer's onApplicationEvent method to pass the event object to the observer. There are two ways to call the publishEvent method. One is to implement the interface, inject the ApplicationEventPublisher object into the container, and then call its method. The other is to call the container directly. There is not much difference between the two methods to publish events.

  • ApplicationEventPublisher:Publish events;
  • ApplicationEventSpring events,Record the source, time, and data of the event;
  • ApplicationListener:Event listeners, observers;

In the event publishing mechanism of Spring, there are three objects,

One is the ApplicationEventPublisher that publishes events, injecting an publisher through a constructor in ShenYu.

The other object is ApplicationEvent, which is inherited from ShenYu through DataChangedEvent, representing the event object

public class DataChangedEvent extends ApplicationEvent {//......}

The last one is ApplicationListener, which is implemented in ShenYu through the DataChangedEventDispatcher class as a listener for events, responsible for handling event objects.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
    //......    }

Distribute data#

  • DataChangedEventDispatcher.onApplicationEvent()

After the event is published, it will automatically enter the onApplicationEvent() method in the DataChangedEventDispatcher class for event processing.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
  /**     * When there is a data change, call this method     * @param event     */  @Override  @SuppressWarnings("unchecked")  public void onApplicationEvent(final DataChangedEvent event) {    // Traverse data change listeners (only ApolloDataChangedListener will be registered here)    for (DataChangedListener listener : listeners) {      // Forward according to different grouping types      switch (event.getGroupKey()) {        case APP_AUTH: // authentication information          listener.onAppAuthChanged((List<AppAuthData>) event.getSource(), event.getEventType());          break;        case PLUGIN: // Plugin events          // Calling the registered listener object          listener.onPluginChanged((List<PluginData>) event.getSource(), event.getEventType());          break;        case RULE: // Rule events          listener.onRuleChanged((List<RuleData>) event.getSource(), event.getEventType());          break;        case SELECTOR: // Selector event          listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());          break;        case META_DATA: // Metadata events          listener.onMetaDataChanged((List<MetaData>) event.getSource(), event.getEventType());          break;        case PROXY_SELECTOR: // Proxy selector event          listener.onProxySelectorChanged((List<ProxySelectorData>) event.getSource(), event.getEventType());          break;        case DISCOVER_UPSTREAM: // Registration discovery of downstream list events          listener.onDiscoveryUpstreamChanged((List<DiscoverySyncData>) event.getSource(), event.getEventType());          applicationContext.getBean(LoadServiceDocEntry.class).loadDocOnUpstreamChanged((List<DiscoverySyncData>) event.getSource(), event.getEventType());          break;        default:          throw new IllegalStateException("Unexpected value: " + event.getGroupKey());      }    }  }    }

When there is a data change, call the onApplicationEvent method, then traverse all data change listeners, determine which data type it is, and hand it over to the corresponding data listeners for processing.

ShenYu has grouped all data into the following types: authentication information, plugin information, rule information, selector information, metadata, proxy selector, and downstream event discovery.

The Data Change Listener here is an abstraction of the data synchronization strategy, processed by specific implementations, and different listeners are processed by different implementations. Currently, Apollo is being analyzed Listening, so here we only focus on ApolloDataChangedListener.

// Inheriting AbstractNodeDataChangedListenerpublic class ApolloDataChangedListener extends AbstractNodeDataChangedListener {    }

ApolloDataChangedListener inherits the AbstractNodeDataChangedListener class, which mainly uses key as the base class for storage, such as Apollo, Nacos, etc., while others such as Zookeeper Consul, etc. are searched in a hierarchical manner using a path.

// Using key as the base class for finding storage methodspublic abstract class AbstractNodeDataChangedListener implements DataChangedListener {         protected AbstractNodeDataChangedListener(final ChangeData changeData) {      this.changeData = changeData;    }}

AbstractNodeDataChangedListener receives ChangeData as a parameter, which defines the key names for each data stored in Apollo. The data stored in Apollo includes the following data:

  • Plugin(plugin)
  • Selector(selector)
  • Rules(rule)
  • Authorization(auth)
  • Metadata(meta)
  • Proxy selector(proxy.selector)
  • Downstream List (discovery)

These information are specified by the ApolloDataChangedListener constructor:

public class ApolloDataChangedListener extends AbstractNodeDataChangedListener {  public ApolloDataChangedListener(final ApolloClient apolloClient) {    // Configure prefixes for several types of grouped data    super(new ChangeData(ApolloPathConstants.PLUGIN_DATA_ID,            ApolloPathConstants.SELECTOR_DATA_ID,            ApolloPathConstants.RULE_DATA_ID,            ApolloPathConstants.AUTH_DATA_ID,            ApolloPathConstants.META_DATA_ID,            ApolloPathConstants.PROXY_SELECTOR_DATA_ID,            ApolloPathConstants.DISCOVERY_DATA_ID));    // Manipulating objects of Apollo    this.apolloClient = apolloClient;  }}

DataChangedListener defines the following methods:

// Data Change Listenerpublic interface DataChangedListener {
    // Call when authorization information changes    default void onAppAuthChanged(List<AppAuthData> changed, DataEventTypeEnum eventType) {    }
    // Called when plugin information changes    default void onPluginChanged(List<PluginData> changed, DataEventTypeEnum eventType) {    }
    // Called when selector information changes    default void onSelectorChanged(List<SelectorData> changed, DataEventTypeEnum eventType) {    }         // Called when metadata information changes    default void onMetaDataChanged(List<MetaData> changed, DataEventTypeEnum eventType) {
    }
    // Call when rule information changes    default void onRuleChanged(List<RuleData> changed, DataEventTypeEnum eventType) {    }
    // Called when proxy selector changes    default void onProxySelectorChanged(List<ProxySelectorData> changed, DataEventTypeEnum eventType) {    }    // Called when downstream information changes are discovered    default void onDiscoveryUpstreamChanged(List<DiscoverySyncData> changed, DataEventTypeEnum eventType) {    }
}

When the plugin is processed by DataChangedEventDispatcher, the method listener.onPluginChanged is called. Next, analyze the logic of the object and implement the processing by AbstractNodeDataChangedListener:

public abstract class AbstractNodeDataChangedListener implements DataChangedListener {  @Override  public void onPluginChanged(final List<PluginData> changed, final DataEventTypeEnum eventType) {    //Configure prefix as plugin.    final String configKeyPrefix = changeData.getPluginDataId() + DefaultNodeConstants.JOIN_POINT;    this.onCommonChanged(configKeyPrefix, changed, eventType, PluginData::getName, PluginData.class);    LOG.debug("[DataChangedListener] PluginChanged {}", configKeyPrefix);  }}

Firstly, the key prefix for constructing configuration data is: plugin., Call onCommonChanged again for unified processing:

private <T> void onCommonChanged(final String configKeyPrefix, final List<T> changedList,                                     final DataEventTypeEnum eventType, final Function<? super T, ? extends String> mapperToKey,                                     final Class<T> tClass) {        // Avoiding concurrent operations on list nodes        final ReentrantLock reentrantLock = listSaveLockMap.computeIfAbsent(configKeyPrefix, key -> new ReentrantLock());        try {            reentrantLock.lock();            // Current incoming plugin list            final List<String> changeNames = changedList.stream().map(mapperToKey).collect(Collectors.toList());            switch (eventType) {                // Delete Operation                case DELETE:                    // delete plugin.${pluginName}                    changedList.stream().map(mapperToKey).forEach(removeKey -> {                        delConfig(configKeyPrefix + removeKey);                    });                    // Remove the corresponding plugin name from plugin. list                    // The plugin.list records the currently enabled list                    delChangedData(configKeyPrefix, changeNames);                    break;                case REFRESH:                case MYSELF:                    // Overload logic                    // Get a list of all plugins in plugin.list                    final List<String> configDataNames = this.getConfigDataNames(configKeyPrefix);                    // Update each currently adjusted plug-in in turn                    changedList.forEach(changedData -> {                        // Publish Configuration                        publishConfig(configKeyPrefix + mapperToKey.apply(changedData), changedData);                    });                    // If there is more data in the currently stored list than what is currently being passed in, delete the excess data                    if (configDataNames != null && configDataNames.size() > changedList.size()) {                        // Kick out the currently loaded data                        configDataNames.removeAll(changeNames);                        // Delete cancelled data one by one                        configDataNames.forEach(this::delConfig);                    }                    // Update list data again                    publishConfig(configKeyPrefix + DefaultNodeConstants.LIST_STR, changeNames);                    break;                default:                    // Add or update                    changedList.forEach(changedData -> {                        publishConfig(configKeyPrefix + mapperToKey.apply(changedData), changedData);                    });                    // Update the newly added plugin                    putChangeData(configKeyPrefix, changeNames);                    break;            }        } catch (Exception e) {            LOG.error("AbstractNodeDataChangedListener onCommonMultiChanged error ", e);        } finally {            reentrantLock.unlock();        }    }

In the above logic, it actually includes the handling of full overloading (REFRESH, MYSELF) and increment (Delete, UPDATE, CREATE)

The plugin mainly includes two nodes:

  • plugin.list List of currently effective plugins
  • plugin.${plugin.name} Detailed information on specific plugins Finally, write the data corresponding to these two nodes into Apollo.

Data initialization#

After starting admin, the current data information will be fully synchronized to Apollo, which is implemented by ApolloDataChangedInit:

// Inheriting AbstractDataChangedInitpublic class ApolloDataChangedInit extends AbstractDataChangedInit {    // Apollo operation object    private final ApolloClient apolloClient;        public ApolloDataChangedInit(final ApolloClient apolloClient) {        this.apolloClient = apolloClient;    }        @Override    protected boolean notExist() {        // Check if nodes such as plugin, auth, meta, proxy.selector exist        // As long as one does not exist, it enters reload (these nodes will not be created, why check once?)        return Stream.of(ApolloPathConstants.PLUGIN_DATA_ID, ApolloPathConstants.AUTH_DATA_ID, ApolloPathConstants.META_DATA_ID, ApolloPathConstants.PROXY_SELECTOR_DATA_ID).allMatch(                this::dataIdNotExist);    }
    /**     * Data id not exist boolean.     *     * @param pluginDataId the plugin data id     * @return the boolean     */    private boolean dataIdNotExist(final String pluginDataId) {        return Objects.isNull(apolloClient.getItemValue(pluginDataId));    }}

Check if there is data in apollo, and if it does not exist, synchronize it. There is a bug here because the key determined here will not be created during synchronization, which will cause data to be reloaded every time it is restarted. PR#5435

ApolloDataChangedInit implements the CommandLineRunner interface. It is an interface provided by springboot that executes the run() method after all Spring Beans are initialized. It is commonly used for initialization operations in projects.

  • SyncDataService.syncAll()

Query data from the database, then perform full data synchronization, including all authentication information, plugin information, rule information, selector information, metadata, proxy selector, and discover downstream events. Mainly, synchronization events are published through eventPublisher. After publishing events through publishEvent(), ApplicationListener performs event change operations, which is referred to as DataChangedEventDispatcher in ShenYu.

@Servicepublic class SyncDataServiceImpl implements SyncDataService {    // Event Publishing    private final ApplicationEventPublisher eventPublisher;         /***     * Full data synchronization     * @param type the type     * @return     */     @Override     public boolean syncAll(final DataEventTypeEnum type) {         // Synchronize auth data         appAuthService.syncData();         // Synchronize plugin data         List<PluginData> pluginDataList = pluginService.listAll();         //Notify subscribers through the Spring publish/subscribe mechanism (publishing DataChangedEvent)         //Unified monitoring by DataChangedEventDispatcher         //DataChangedEvent comes with configuration grouping type, current operation type, and data         eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.PLUGIN, type, pluginDataList));         // synchronizing selector         List<SelectorData> selectorDataList = selectorService.listAll();         eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, type, selectorDataList));         // Synchronization rules         List<RuleData> ruleDataList = ruleService.listAll();         eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.RULE, type, ruleDataList));         // Synchronization metadata         metaDataService.syncData();         // Synchronization Downstream List         discoveryService.syncData();         return true;     }    }

Bootstrap synchronization operation initialization#

The data synchronization initialization operation on the gateway side mainly involves subscribing to nodes in apollo, and receiving changed data when there are changes. This depends on the listener mechanism of apollo. In ShenYu, the person responsible for Apollo data synchronization is ApolloDataService. The functional logic of Apollo DataService is completed during the instantiation process: subscribe to the shenyu data synchronization node in Apollo. Implement through the configService.addChangeListener() method;

public class ApolloDataService extends AbstractNodeDataSyncService implements SyncDataService {    public ApolloDataService(final Config configService, final PluginDataSubscriber pluginDataSubscriber,                             final List<MetaDataSubscriber> metaDataSubscribers,                             final List<AuthDataSubscriber> authDataSubscribers,                             final List<ProxySelectorDataSubscriber> proxySelectorDataSubscribers,                             final List<DiscoveryUpstreamDataSubscriber> discoveryUpstreamDataSubscribers) {        // Configure the prefix for listening        super(new ChangeData(ApolloPathConstants.PLUGIN_DATA_ID,                        ApolloPathConstants.SELECTOR_DATA_ID,                        ApolloPathConstants.RULE_DATA_ID,                        ApolloPathConstants.AUTH_DATA_ID,                        ApolloPathConstants.META_DATA_ID,                        ApolloPathConstants.PROXY_SELECTOR_DATA_ID,                        ApolloPathConstants.DISCOVERY_DATA_ID),                pluginDataSubscriber, metaDataSubscribers, authDataSubscribers, proxySelectorDataSubscribers, discoveryUpstreamDataSubscribers);        this.configService = configService;        // Start listening        // Note: The Apollo method is only responsible for obtaining data from Apollo and adding it to the local cache, and does not handle listening        startWatch();        // Configure listening        apolloWatchPrefixes();    }}

Firstly, configure the key information that needs to be processed and synchronize it with the admin's key. Next, call the startWatch() method to process data acquisition and listening. But in the implementation of Apollo, this method is only responsible for handling data retrieval and setting it to the local cache. Listening is handled by the apolloWatchPrefixes method

private void apolloWatchPrefixes() {        // Defining Listeners        final ConfigChangeListener listener = changeEvent -> {            changeEvent.changedKeys().forEach(changeKey -> {                try {                    final ConfigChange configChange = changeEvent.getChange(changeKey);                    // Skip if not changed                    if (configChange == null) {                        LOG.error("apollo watchPrefixes error configChange is null {}", changeKey);                        return;                    }                    final String newValue = configChange.getNewValue();                    // skip last is "list"                    // If it is a Key at the end of the list, such as plugin.list, skip it because it is only a list that records the effectiveness and will not be cached locally                    final int lastListStrIndex = changeKey.length() - DefaultNodeConstants.LIST_STR.length();                    if (changeKey.lastIndexOf(DefaultNodeConstants.LIST_STR) == lastListStrIndex) {                        return;                    }                    // If it starts with plugin. => Process plugin data                    if (changeKey.indexOf(ApolloPathConstants.PLUGIN_DATA_ID) == 0) {                        // delete                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            // clear cache                            unCachePluginData(changeKey);                        } else {                            // update cache                            cachePluginData(newValue);                        }                        // If it starts with selector. => Process selector data                    } else if (changeKey.indexOf(ApolloPathConstants.SELECTOR_DATA_ID) == 0) {                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            unCacheSelectorData(changeKey);                        } else {                            cacheSelectorData(newValue);                        }                        // If it starts with rule. => Process rule data                    } else if (changeKey.indexOf(ApolloPathConstants.RULE_DATA_ID) == 0) {                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            unCacheRuleData(changeKey);                        } else {                            cacheRuleData(newValue);                        }                      // If it starts with auth. => Process auth data                    } else if (changeKey.indexOf(ApolloPathConstants.AUTH_DATA_ID) == 0) {                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            unCacheAuthData(changeKey);                        } else {                            cacheAuthData(newValue);                        }                        // If it starts with meta. => Process meta data                    } else if (changeKey.indexOf(ApolloPathConstants.META_DATA_ID) == 0) {                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            unCacheMetaData(changeKey);                        } else {                            cacheMetaData(newValue);                        }                        // If it starts with proxy.selector. => Process proxy.selector meta                    } else if (changeKey.indexOf(ApolloPathConstants.PROXY_SELECTOR_DATA_ID) == 0) {                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            unCacheProxySelectorData(changeKey);                        } else {                            cacheProxySelectorData(newValue);                        }                        // If it starts with discovery. => Process discovery meta                    } else if (changeKey.indexOf(ApolloPathConstants.DISCOVERY_DATA_ID) == 0) {                        if (PropertyChangeType.DELETED.equals(configChange.getChangeType())) {                            unCacheDiscoveryUpstreamData(changeKey);                        } else {                            cacheDiscoveryUpstreamData(newValue);                        }                    }                } catch (Exception e) {                    LOG.error("apollo sync listener change key handler error", e);                }            });        };        watchConfigChangeListener = listener;        // Add listening        configService.addChangeListener(listener, Collections.emptySet(), ApolloPathConstants.pathKeySet());
    }

The logic of loading data from the previous admin will only add two keys to the plugin: plugin.list and plugin.${plugin.name}, while plugin.list is a list of all enabled plugins, and the data for this key is in the There is no data in the local cache, only `plugin${plugin.name} will be focus.

At this point, the synchronization logic of bootstrap in apollo has been analyzed.

Http Long Polling Data Synchronization Source Code Analysis

· 31 min read
Apache ShenYu Committer

Apache ShenYu is an asynchronous, high-performance, cross-language, responsive API gateway.

In ShenYu gateway, data synchronization refers to how to synchronize the updated data to the gateway after the data is sent in the background management system. The Apache ShenYu gateway currently supports data synchronization for ZooKeeper, WebSocket, http long poll, Nacos, etcd and Consul. The main content of this article is based on http long poll data synchronization source code analysis.

This paper based on shenyu-2.5.0 version of the source code analysis, the official website of the introduction of please refer to the Data Synchronization Design .

1. Http Long Polling#

Here is a direct quote from the official website with the relevant description.

The mechanism of Zookeeper and WebSocket data synchronization is relatively simple, while Http long polling is more complex. Apache ShenYu borrowed the design ideas of Apollo and Nacos, took their essence, and implemented Http long polling data synchronization function by itself. Note that this is not the traditional ajax long polling!

Http Long Polling mechanism as shown above, Apache ShenYu gateway active request shenyu-admin configuration service, read timeout time is 90s, means that the gateway layer request configuration service will wait at most 90s, so as to facilitate shenyu-admin configuration service timely response to change data, so as to achieve quasi real-time push.

The Http long polling mechanism is initiated by the gateway requesting shenyu-admin, so for this source code analysis, we start from the gateway side.

2. Gateway Data Sync#

2.1 Load Configuration#

The Http long polling data synchronization configuration is loaded through spring boot starter mechanism when we introduce the relevant dependencies and have the following configuration in the configuration file.

Introduce dependencies in the pom file.

<!--shenyu data sync start use http--><dependency>    <groupId>org.apache.shenyu</groupId>    <artifactId>shenyu-spring-boot-starter-sync-data-http</artifactId>    <version>${project.version}</version></dependency>

Add the following configuration to the application.yml configuration file.

shenyu:    sync:       http:          url : http://localhost:9095

When the gateway is started, the configuration class HttpSyncDataConfiguration is executed, loading the corresponding Bean.


/** * Http sync data configuration for spring boot. */@Configuration@ConditionalOnClass(HttpSyncDataService.class)@ConditionalOnProperty(prefix = "shenyu.sync.http", name = "url")@EnableConfigurationProperties(value = HttpConfig.class)public class HttpSyncDataConfiguration {
    private static final Logger LOGGER = LoggerFactory.getLogger(HttpSyncDataConfiguration.class);
    /**     * Rest template.     *     * @param httpConfig the http config     * @return the rest template     */    @Bean    public RestTemplate restTemplate(final HttpConfig httpConfig) {        OkHttp3ClientHttpRequestFactory factory = new OkHttp3ClientHttpRequestFactory();        factory.setConnectTimeout(Objects.isNull(httpConfig.getConnectionTimeout()) ? (int) HttpConstants.CLIENT_POLLING_CONNECT_TIMEOUT : httpConfig.getConnectionTimeout());        factory.setReadTimeout(Objects.isNull(httpConfig.getReadTimeout()) ? (int) HttpConstants.CLIENT_POLLING_READ_TIMEOUT : httpConfig.getReadTimeout());        factory.setWriteTimeout(Objects.isNull(httpConfig.getWriteTimeout()) ? (int) HttpConstants.CLIENT_POLLING_WRITE_TIMEOUT : httpConfig.getWriteTimeout());        return new RestTemplate(factory);    }
    /**     * AccessTokenManager.     *     * @param httpConfig   the http config.     * @param restTemplate the rest template.     * @return the access token manager.     */    @Bean    public AccessTokenManager accessTokenManager(final HttpConfig httpConfig, final RestTemplate restTemplate) {        return new AccessTokenManager(restTemplate, httpConfig);    }
    /**     * Http sync data service.     *     * @param httpConfig         the http config     * @param pluginSubscriber   the plugin subscriber     * @param restTemplate       the rest template     * @param metaSubscribers    the meta subscribers     * @param authSubscribers    the auth subscribers     * @param accessTokenManager the access token manager     * @return the sync data service     */    @Bean    public SyncDataService httpSyncDataService(final ObjectProvider<HttpConfig> httpConfig,                                               final ObjectProvider<PluginDataSubscriber> pluginSubscriber,                                               final ObjectProvider<RestTemplate> restTemplate,                                               final ObjectProvider<List<MetaDataSubscriber>> metaSubscribers,                                               final ObjectProvider<List<AuthDataSubscriber>> authSubscribers,                                               final ObjectProvider<AccessTokenManager> accessTokenManager) {        LOGGER.info("you use http long pull sync shenyu data");        return new HttpSyncDataService(                Objects.requireNonNull(httpConfig.getIfAvailable()),                Objects.requireNonNull(pluginSubscriber.getIfAvailable()),                Objects.requireNonNull(restTemplate.getIfAvailable()),                metaSubscribers.getIfAvailable(Collections::emptyList),                authSubscribers.getIfAvailable(Collections::emptyList),                Objects.requireNonNull(accessTokenManager.getIfAvailable())        );    }}

HttpSyncDataConfiguration is the configuration class for Http long polling data synchronization, responsible for creating HttpSyncDataService (responsible for the concrete implementation of http data synchronization) 、 RestTemplate and AccessTokenManager (responsible for the access token processing). It is annotated as follows.

  • @Configuration: indicates that this is a configuration class.
  • @ConditionalOnClass(HttpSyncDataService.class): conditional annotation indicating that the class HttpSyncDataService is to be present.
  • @ConditionalOnProperty(prefix = "shenyu.sync.http", name = "url"): conditional annotation to have the property shenyu.sync.http.url configured.
  • @EnableConfigurationProperties(value = HttpConfig.class): indicates that the annotation @ConfigurationProperties(prefix = "shenyu.sync.http") on HttpConfig will take effect, and the configuration class HttpConfig will be injected into the Ioc container.

2.2 Property initialization#

  • HttpSyncDataService

In the constructor of HttpSyncDataService, complete the property initialization.

public class HttpSyncDataService implements SyncDataService {
    // omitted attribute field ......
    public HttpSyncDataService(final HttpConfig httpConfig,                               final PluginDataSubscriber pluginDataSubscriber,                               final RestTemplate restTemplate,                               final List<MetaDataSubscriber> metaDataSubscribers,                               final List<AuthDataSubscriber> authDataSubscribers,                               final AccessTokenManager accessTokenManager) {          // 1. accessTokenManager          this.accessTokenManager = accessTokenManager;          // 2. create data refresh factory          this.factory = new DataRefreshFactory(pluginDataSubscriber, metaDataSubscribers, authDataSubscribers);          // 3. shenyu-admin url          this.serverList = Lists.newArrayList(Splitter.on(",").split(httpConfig.getUrl()));          // 4. restTemplate          this.restTemplate = restTemplate;          // 5. start a long polling task          this.start();    }
    //......}

Other functions and related fields are omitted from the above code, and the initialization of the properties is done in the constructor, mainly.

  • the role of accessTokenManager is to request admin and update the access token regularly.

  • creating data processors for subsequent caching of various types of data (plugins, selectors, rules, metadata and authentication data).

  • obtaining the admin property configuration, mainly to obtain the url of the admin, admin with possible clusters, multiple split by a comma (,).

  • using RestTemplate, for launching requests to admin.

  • Start the long polling task.

2.3 Start the long polling task.#

  • HttpSyncDataService#start()

In the start() method, two things are done, one is to get the full amount of data, that is, to request the admin side to get all the data that needs to be synchronized, and then cache the acquired data into the gateway memory. The other is to open a multi-threaded execution of a long polling task.

public class HttpSyncDataService implements SyncDataService {
    // ......
    private void start() {        // It could be initialized multiple times, so you need to control that.        if (RUNNING.compareAndSet(false, true)) {            // fetch all group configs.            // Initial startup, get full data            this.fetchGroupConfig(ConfigGroupEnum.values());            // one backend service, one thread            int threadSize = serverList.size();            // ThreadPoolExecutor            this.executor = new ThreadPoolExecutor(threadSize, threadSize, 60L, TimeUnit.SECONDS,                    new LinkedBlockingQueue<>(),                    ShenyuThreadFactory.create("http-long-polling", true));            // start long polling, each server creates a thread to listen for changes.            this.serverList.forEach(server -> this.executor.execute(new HttpLongPollingTask(server)));        } else {            LOG.info("shenyu http long polling was started, executor=[{}]", executor);        }    }
    // ......}
2.3.1 Fetch Data#
  • HttpSyncDataService#fetchGroupConfig()

ShenYu groups all the data that needs to be synchronized, there are 5 data types, namely plugins, selectors, rules, metadata and authentication data.

public enum ConfigGroupEnum {    APP_AUTH, // app auth data    PLUGIN, // plugin data    RULE, // rule data    SELECTOR, // selector data    META_DATA; // meta data}

The admin may be a cluster, and here a request is made to each admin in a round-robin fashion, and if one succeeds, then the operation to get the full amount of data from the admin and cache it to the gateway is executed successfully. If there is an exception, the request is launched to the next admin.

public class HttpSyncDataService implements SyncDataService {
    // ......
    private void fetchGroupConfig(final ConfigGroupEnum... groups) throws ShenyuException {        // It is possible that admins are clustered, and here requests are made to each admin by means of a loop.        for (int index = 0; index < this.serverList.size(); index++) {            String server = serverList.get(index);            try {                // do execute                this.doFetchGroupConfig(server, groups);                // If you have a success, you are successful and can exit the loop                break;            } catch (ShenyuException e) {                // An exception occurs, try executing the next                // The last one also failed to execute, throwing an exception                // no available server, throw exception.                if (index >= serverList.size() - 1) {                    throw e;                }                LOG.warn("fetch config fail, try another one: {}", serverList.get(index + 1));            }        }    }
    // ......}
  • HttpSyncDataService#doFetchGroupConfig()

In this method, the request parameters are first assembled, then the request is launched through httpClient to admin to get the data, and finally the obtained data is updated to the gateway memory.

public class HttpSyncDataService implements SyncDataService {
    // ......
    // Launch a request to the admin backend management system to get all synchronized data    private void doFetchGroupConfig(final String server, final ConfigGroupEnum... groups) {        // 1. build request parameters, all grouped enumeration types        StringBuilder params = new StringBuilder();        for (ConfigGroupEnum groupKey : groups) {            params.append("groupKeys").append("=").append(groupKey.name()).append("&");        }        // admin url:  /configs/fetch        String url = server + Constants.SHENYU_ADMIN_PATH_CONFIGS_FETCH + "?" + StringUtils.removeEnd(params.toString(), "&");        LOG.info("request configs: [{}]", url);        String json;        try {            HttpHeaders headers = new HttpHeaders();            // set accessToken            headers.set(Constants.X_ACCESS_TOKEN, this.accessTokenManager.getAccessToken());            HttpEntity<String> httpEntity = new HttpEntity<>(headers);            // 2. get a request for change data            json = this.restTemplate.exchange(url, HttpMethod.GET, httpEntity, String.class).getBody();        } catch (RestClientException e) {            String message = String.format("fetch config fail from server[%s], %s", url, e.getMessage());            LOG.warn(message);            throw new ShenyuException(message, e);        }        // update local cache        // 3. Update data in gateway memory        boolean updated = this.updateCacheWithJson(json);        if (updated) {            LOG.debug("get latest configs: [{}]", json);            return;        }        // not updated. it is likely that the current config server has not been updated yet. wait a moment.        LOG.info("The config of the server[{}] has not been updated or is out of date. Wait for 30s to listen for changes again.", server);        // No data update on the server side, just wait 30s        ThreadUtils.sleep(TimeUnit.SECONDS, 30);    }
    // ......}

From the code, we can see that the admin side provides the interface to get the full amount of data is /configs/fetch, so we will not go further here and put it in the later analysis.

If you get the result data from admin and update it successfully, then this method is finished. If there is no successful update, then it is possible that there is no data update on the server side, so wait 30s.

Here you need to explain in advance, the gateway in determining whether the update is successful, there is a comparison of the data operation, immediately mentioned.

  • HttpSyncDataService#updateCacheWithJson()

Update the data in the gateway memory. Use GSON for deserialization, take the real data from the property data and give it to DataRefreshFactory to do the update.

public class HttpSyncDataService implements SyncDataService {
    // ......
    private boolean updateCacheWithJson(final String json) {        // Using GSON for deserialization        JsonObject jsonObject = GSON.fromJson(json, JsonObject.class);        // if the config cache will be updated?        return factory.executor(jsonObject.getAsJsonObject("data"));    }
    // ......}
  • DataRefreshFactory#executor()

Update the data according to different data types and return the updated result. The specific update logic is given to the dataRefresh.refresh() method. In the update result, one of the data types is updated, which means that the operation has been updated.

public final class DataRefreshFactory {        // ......        public boolean executor(final JsonObject data) {        // update data        List<Boolean> result = ENUM_MAP.values().parallelStream()                .map(dataRefresh -> dataRefresh.refresh(data))                .collect(Collectors.toList());        // one of the data types is updated, which means that the operation has been updated.        return result.stream().anyMatch(Boolean.TRUE::equals);    }        // ......}
  • AbstractDataRefresh#refresh()

The data update logic uses the template method design pattern, where the generic operation is done in the abstract method and the different implementation logic is done by subclasses. 5 data types have some differences in the specific update logic, but there is also a common update logic, and the class diagram relationship is as follows.

In the generic refresh() method, it is responsible for data type conversion, determining whether an update is needed, and the actual data refresh operation.

public abstract class AbstractDataRefresh<T> implements DataRefresh {
    // ......
    @Override    public Boolean refresh(final JsonObject data) {        // convert data        JsonObject jsonObject = convert(data);        if (Objects.isNull(jsonObject)) {            return false;        }
        boolean updated = false;        // get data        ConfigData<T> result = fromJson(jsonObject);        // does it need to be updated        if (this.updateCacheIfNeed(result)) {            updated = true;            // real update logic, data refresh operation            refresh(result.getData());        }
        return updated;    }
    // ......}
  • AbstractDataRefresh#updateCacheIfNeed()

The process of data conversion, which is based on different data types, we will not trace further to see if the data needs to be updated logically. The method name is updateCacheIfNeed(), which is implemented by method overloading.

public abstract class AbstractDataRefresh<T> implements DataRefresh {
    // ......
    // result is data    protected abstract boolean updateCacheIfNeed(ConfigData<T> result);
    // newVal is the latest value obtained    // What kind of data type is groupEnum    protected boolean updateCacheIfNeed(final ConfigData<T> newVal, final ConfigGroupEnum groupEnum) {        // If it is the first time, then it is put directly into the cache and returns true, indicating that the update was made this time        if (GROUP_CACHE.putIfAbsent(groupEnum, newVal) == null) {            return true;        }        ResultHolder holder = new ResultHolder(false);        GROUP_CACHE.merge(groupEnum, newVal, (oldVal, value) -> {            // md5 value is the same, no need to update            if (StringUtils.equals(oldVal.getMd5(), newVal.getMd5())) {                LOG.info("Get the same config, the [{}] config cache will not be updated, md5:{}", groupEnum, oldVal.getMd5());                return oldVal;            }
            // The current cached data has been modified for a longer period than the new data and does not need to be updated.            // must compare the last update time            if (oldVal.getLastModifyTime() >= newVal.getLastModifyTime()) {                LOG.info("Last update time earlier than the current configuration, the [{}] config cache will not be updated", groupEnum);                return oldVal;            }            LOG.info("update {} config: {}", groupEnum, newVal);            holder.result = true;            return newVal;        });        return holder.result;    }
    // ......}

As you can see from the source code above, there are two cases where updates are not required.

  • The md5 values of both data are the same, so no update is needed;
  • The current cached data has been modified longer than the new data, so no update is needed.

In other cases, the data needs to be updated.

At this point, we have finished analyzing the logic of the start() method to get the full amount of data for the first time, followed by the long polling operation. For convenience, I will paste the start() method once more.

public class HttpSyncDataService implements SyncDataService {
    // ......
    private void start() {        // It could be initialized multiple times, so you need to control that.        if (RUNNING.compareAndSet(false, true)) {            // fetch all group configs.            // Initial startup, get full data            this.fetchGroupConfig(ConfigGroupEnum.values());            // one backend service, one thread            int threadSize = serverList.size();            // ThreadPoolExecutor            this.executor = new ThreadPoolExecutor(threadSize, threadSize, 60L, TimeUnit.SECONDS,                    new LinkedBlockingQueue<>(),                    ShenyuThreadFactory.create("http-long-polling", true));            // start long polling, each server creates a thread to listen for changes.            this.serverList.forEach(server -> this.executor.execute(new HttpLongPollingTask(server)));        } else {            LOG.info("shenyu http long polling was started, executor=[{}]", executor);        }    }
    // ......}
2.3.2 Execute Long Polling Task#
  • HttpLongPollingTask#run()

The long polling task is HttpLongPollingTask, which implements the Runnable interface and the task logic is in the run() method. The task is executed continuously through a while() loop, i.e., long polling. There are three retries in each polling logic, one polling task fails, wait 5s and continue, 3 times all fail, wait 5 minutes and try again.

Start long polling, an admin service, and create a thread for data synchronization.

class HttpLongPollingTask implements Runnable {
    private final String server;
    HttpLongPollingTask(final String server) {        this.server = server;    }
    @Override    public void run() {        // long polling        while (RUNNING.get()) {            // Default retry 3 times            int retryTimes = 3;            for (int time = 1; time <= retryTimes; time++) {                try {                    doLongPolling(server);                } catch (Exception e) {                    if (time < retryTimes) {                        LOG.warn("Long polling failed, tried {} times, {} times left, will be suspended for a while! {}",                                time, retryTimes - time, e.getMessage());                        // long polling failed, wait 5s and continue                        ThreadUtils.sleep(TimeUnit.SECONDS, 5);                        continue;                    }                    // print error, then suspended for a while.                    LOG.error("Long polling failed, try again after 5 minutes!", e);                    // 3 次都失败了,等 5 分钟再试                    ThreadUtils.sleep(TimeUnit.MINUTES, 5);                }            }        }        LOG.warn("Stop http long polling.");    }}
  • HttpSyncDataService#doLongPolling()

Core logic for performing long polling tasks.

  • Assembling request parameters based on data types: md5 and lastModifyTime.
  • Assembling the request header and request body.
  • Launching a request to admin to determine if the group data has changed.
  • Based on the group that has changed, go back and get the data.
public class HttpSyncDataService implements SyncDataService {    private void doLongPolling(final String server) {        // build request params: md5 and lastModifyTime        MultiValueMap<String, String> params = new LinkedMultiValueMap<>(8);        for (ConfigGroupEnum group : ConfigGroupEnum.values()) {            ConfigData<?> cacheConfig = factory.cacheConfigData(group);            if (cacheConfig != null) {                String value = String.join(",", cacheConfig.getMd5(), String.valueOf(cacheConfig.getLastModifyTime()));                params.put(group.name(), Lists.newArrayList(value));            }        }        // build request head and body        HttpHeaders headers = new HttpHeaders();        headers.setContentType(MediaType.APPLICATION_FORM_URLENCODED);        // set accessToken        headers.set(Constants.X_ACCESS_TOKEN, this.accessTokenManager.getAccessToken());        HttpEntity<MultiValueMap<String, String>> httpEntity = new HttpEntity<>(params, headers);        String listenerUrl = server + Constants.SHENYU_ADMIN_PATH_CONFIGS_LISTENER;
        JsonArray groupJson;        //Initiate a request to admin to determine if the group data has changed        //Here it just determines whether a group has changed or not        try {            String json = this.restTemplate.postForEntity(listenerUrl, httpEntity, String.class).getBody();            LOG.info("listener result: [{}]", json);            JsonObject responseFromServer = GsonUtils.getGson().fromJson(json, JsonObject.class);            groupJson = responseFromServer.getAsJsonArray("data");        } catch (RestClientException e) {            String message = String.format("listener configs fail, server:[%s], %s", server, e.getMessage());            throw new ShenyuException(message, e);        }        // Depending on the group where the change occurred, go back and get the data        /**         * The official website explains here.         * After the gateway receives the response message, it only knows which Group has made the configuration change, and it still needs to request the configuration data of that Group again.         * There may be a question here: why not write out the changed data directly?         * We also discussed this issue in depth during development, because the http long polling mechanism can only guarantee quasi-real time, if the processing at the gateway layer is not timely, * or the administrator frequently updates the configuration, it is very difficult to get the information from the gateway layer.         * If it is not processed in time at the gateway level, or if the administrator updates the configuration frequently, it is very likely to miss the push of a configuration change, so for security reasons, we only inform a group that the information has changed.         *For security reasons, we only notify a group of changes.         * Personal understanding.         * If the change data is written out directly, when the administrator frequently updates the configuration, the first update will remove the client from the blocking queue and return the response information to the gateway.         * If a second update is made at this time, the current client is not in the blocking queue, so this time the change is missed.         * The same is true for untimely processing by the gateway layer.         * This is a long polling, one gateway one synchronization thread, there may be time consuming process.         * If the admin has data changes, the current gateway client is not in the blocking queue and will not get the data.         */        if (groupJson != null) {            // fetch group configuration async.            ConfigGroupEnum[] changedGroups = GSON.fromJson(groupJson, ConfigGroupEnum[].class);            if (ArrayUtils.isNotEmpty(changedGroups)) {                log.info("Group config changed: {}", Arrays.toString(changedGroups));                // Proactively get the changed data from admin, depending on the grouping, and take the data in full                this.doFetchGroupConfig(server, changedGroups);            }        }        if (Objects.nonNull(groupJson) && groupJson.size() > 0) {            // fetch group configuration async.            ConfigGroupEnum[] changedGroups = GsonUtils.getGson().fromJson(groupJson, ConfigGroupEnum[].class);            LOG.info("Group config changed: {}", Arrays.toString(changedGroups));            // Proactively get the changed data from admin, depending on the grouping, and take the data in full            this.doFetchGroupConfig(server, changedGroups);        }    }}

One special point needs to be explained here: In the long polling task, why don't you get the changed data directly? Instead, we determine which group data has been changed, and then request admin again to get the changed data?

The official explanation here is.

After the gateway receives the response information, it only knows which Group has changed its configuration, and it needs to request the configuration data of that Group again. There may be a question here: Why not write out the changed data directly? We have discussed this issue in depth during development, because the http long polling mechanism can only guarantee quasi-real time, and if it is not processed in time at the gateway layer, it will be very difficult to update the configuration data. If the gateway layer is not processed in time, or the administrator updates the configuration frequently, it is likely to miss the push of a configuration change, so for security reasons, we only inform a group that the information has changed.

My personal understanding is that.

If the change data is written out directly, when the administrator updates the configuration frequently, the first update will remove the client from blocking queue and return the response information to the gateway. If a second update is made at this time, then the current client is not in the blocking queue, so this time the change is missed. The same is true for the gateway layer's untimely processing. This is a long polling, one gateway one synchronization thread, there may be a time-consuming process. If admin has data changes, the current gateway client is not in the blocking queue and will not get the data.

We have not yet analyzed the processing logic of the admin side, so let's talk about it roughly. At the admin end, the gateway client will be put into the blocking queue, and when there is a data change, the gateway client will come out of the queue and send the change data. So, if the gateway client is not in the blocking queue when there is a data change, then the current changed data is not available.

When we know which grouping data has changed, we actively get the changed data from admin again, and get the data in full depending on the grouping. The call method is doFetchGroupConfig(), which has been analyzed in the previous section.

At this point of analysis, the data synchronization operation on the gateway side is complete. The long polling task is to keep making requests to admin to see if the data has changed, and if any group data has changed, then initiate another request to admin to get the changed data, and then update the data in the gateway's memory.

Long polling task flow at the gateway side.

3. Admin Data Sync#

From the previous analysis, it can be seen that the gateway side mainly calls two interfaces of admin.

  • /configs/listener: determine whether the group data has changed.
  • /configs/fetch: get the changed group data.

If we analyze directly from these two interfaces, some parts may not be well understood, so let's start analyzing the data synchronization process from the admin startup process.

3.1 Load Configuration#

If the following configuration is done in the configuration file application.yml, it means that the data synchronization is done by http long polling.

shenyu:  sync:      http:        enabled: true

When the program starts, the configuration of the data synchronization class is loaded through springboot conditional assembly. In this process, HttpLongPollingDataChangedListener is created to handle the implementation logic related to long polling.

/** * Data synchronization configuration class * Conditional assembly via springboot * The type Data sync configuration. */@Configurationpublic class DataSyncConfiguration {
    /**     * http long polling.     */    @Configuration    @ConditionalOnProperty(name = "shenyu.sync.http.enabled", havingValue = "true")    @EnableConfigurationProperties(HttpSyncProperties.class)    static class HttpLongPollingListener {
        @Bean        @ConditionalOnMissingBean(HttpLongPollingDataChangedListener.class)        public HttpLongPollingDataChangedListener httpLongPollingDataChangedListener(final HttpSyncProperties httpSyncProperties) {            return new HttpLongPollingDataChangedListener(httpSyncProperties);        }    }}

3.2 Data change listener instantiation#

  • HttpLongPollingDataChangedListener

The data change listener is instantiated and initialized by means of a constructor. In the constructor, a blocking queue is created to hold clients, a thread pool is created to execute deferred tasks and periodic tasks, and information about the properties of long polling is stored.

    public HttpLongPollingDataChangedListener(final HttpSyncProperties httpSyncProperties) {        // default client (here is the gateway) 1024        this.clients = new ArrayBlockingQueue<>(1024);        // create thread pool        // ScheduledThreadPoolExecutor can perform delayed tasks, periodic tasks, and normal tasks        this.scheduler = new ScheduledThreadPoolExecutor(1,                ShenyuThreadFactory.create("long-polling", true));        // http sync properties        this.httpSyncProperties = httpSyncProperties;    }

In addition, it has the following class diagram relationships.

The InitializingBean interface is implemented, so the afterInitialize() method is executed during the initialization of the bean. Execute periodic tasks via thread pool: updating the data in memory (CACHE) is executed every 5 minutes and starts after 5 minutes. Refreshing the local cache is reading data from the database to the local cache (in this case the memory), done by refreshLocalCache().

public class HttpLongPollingDataChangedListener extends AbstractDataChangedListener {
    // ......
    /**     * is called in the afterPropertiesSet() method of the InitializingBean interface, which is executed during the initialization of the bean     */    @Override    protected void afterInitialize() {        long syncInterval = httpSyncProperties.getRefreshInterval().toMillis();        // Periodically check the data for changes and update the cache
        // Execution cycle task: Update data in memory (CACHE) is executed every 5 minutes and starts after 5 minutes        // Prevent the admin from starting up first for a while and then generating data; then the gateway doesn't get the full amount of data when it first connects        scheduler.scheduleWithFixedDelay(() -> {            LOG.info("http sync strategy refresh config start.");            try {                // Read data from database to local cache (in this case, memory)                this.refreshLocalCache();                LOG.info("http sync strategy refresh config success.");            } catch (Exception e) {                LOG.error("http sync strategy refresh config error!", e);            }        }, syncInterval, syncInterval, TimeUnit.MILLISECONDS);        LOG.info("http sync strategy refresh interval: {}ms", syncInterval);    }
    // ......}
  • refreshLocalCache()

Update for each of the 5 data types.

public abstract class AbstractDataChangedListener implements DataChangedListener, InitializingBean {
    // ......
    // Read data from database to local cache (in this case, memory)    private void refreshLocalCache() {        //update app auth data        this.updateAppAuthCache();        //update plugin data        this.updatePluginCache();        //update rule data        this.updateRuleCache();        //update selector data        this.updateSelectorCache();        //update meta data        this.updateMetaDataCache();    }
    // ......}

The logic of the 5 update methods is similar, call the service method to get the data and put it into the memory CACHE. Take the updateRuleData method updateRuleCache() for example, pass in the rule enumeration type and call ruleService.listAll() to get all the rule data from the database.

    /**     * Update rule cache.     */    protected void updateRuleCache() {        this.updateCache(ConfigGroupEnum.RULE, ruleService.listAll());    }
  • updateCache()

Update the data in memory using the data in the database.

public abstract class AbstractDataChangedListener implements DataChangedListener, InitializingBean {
    // ......
    // cache Map    protected static final ConcurrentMap<String, ConfigDataCache> CACHE = new ConcurrentHashMap<>();
    /**     * if md5 is not the same as the original, then update lcoal cache.     * @param group ConfigGroupEnum     * @param <T> the type of class     * @param data the new config data     */    protected <T> void updateCache(final ConfigGroupEnum group, final List<T> data) {        // data serialization        String json = GsonUtils.getInstance().toJson(data);        // pass in md5 value and modification time        ConfigDataCache newVal = new ConfigDataCache(group.name(), json, Md5Utils.md5(json), System.currentTimeMillis());        // update group data        ConfigDataCache oldVal = CACHE.put(newVal.getGroup(), newVal);        log.info("update config cache[{}], old: {}, updated: {}", group, oldVal, newVal);    }
    // ......}

The initialization process is to start periodic tasks to update the memory data by fetching data from the database at regular intervals.

Next, we start the analysis of two interfaces.

  • /configs/listener: determines if the group data has changed.
  • /configs/fetch: fetching the changed group data.

3.3 Data change polling interface#

  • /configs/listener: determines if the group data has changed.

The interface class is ConfigController, which only takes effect when using http long polling for data synchronization. The interface method listener() has no other logic and calls the doLongPolling() method directly.

   /** * This Controller only when HttpLongPollingDataChangedListener exist, will take effect. */@ConditionalOnBean(HttpLongPollingDataChangedListener.class)@RestController@RequestMapping("/configs")public class ConfigController {
    private final HttpLongPollingDataChangedListener longPollingListener;
    public ConfigController(final HttpLongPollingDataChangedListener longPollingListener) {        this.longPollingListener = longPollingListener;    }        // Omit other logic
    /**     * Listener.     * Listen for data changes and perform long polling     * @param request  the request     * @param response the response     */    @PostMapping(value = "/listener")    public void listener(final HttpServletRequest request, final HttpServletResponse response) {        longPollingListener.doLongPolling(request, response);    }
}
  • HttpLongPollingDataChangedListener#doLongPolling()

Perform long polling tasks: If there are data changes, they will be responded to the client (in this case, the gateway side) immediately. Otherwise, the client will be blocked until there is a data change or a timeout.

public class HttpLongPollingDataChangedListener extends AbstractDataChangedListener {
    // ......
    /**     * Execute long polling: If there is a data change, it will be responded to the client (here is the gateway side) immediately.     * Otherwise, the client will otherwise remain blocked until there is a data change or a timeout.     * @param request     * @param response     */    public void doLongPolling(final HttpServletRequest request, final HttpServletResponse response) {        // compare group md5        // Compare the md5, determine whether the data of the gateway and the data of the admin side are consistent, and get the data group that has changed        List<ConfigGroupEnum> changedGroup = compareChangedGroup(request);        String clientIp = getRemoteIp(request);        // response immediately.        // Immediate response to the gateway if there is changed data        if (CollectionUtils.isNotEmpty(changedGroup)) {            this.generateResponse(response, changedGroup);            Log.info("send response with the changed group, ip={}, group={}", clientIp, changedGroup);            return;        }
        // No change, then the client (in this case the gateway) is put into the blocking queue        // listen for configuration changed.        final AsyncContext asyncContext = request.startAsync();        // AsyncContext.settimeout() does not timeout properly, so you have to control it yourself        asyncContext.setTimeout(0L);        // block client's thread.        scheduler.execute(new LongPollingClient(asyncContext, clientIp, HttpConstants.SERVER_MAX_HOLD_TIMEOUT));    }}
  • HttpLongPollingDataChangedListener#compareChangedGroup()

To determine whether the group data has changed, the judgment logic is to compare the md5 value and lastModifyTime at the gateway side and the admin side.

  • If the md5 value is different, then it needs to be updated.
  • If the lastModifyTime on the admin side is greater than the lastModifyTime on the gateway side, then it needs to be updated.
 /**     * Determine if the group data has changed     * @param request     * @return     */    private List<ConfigGroupEnum> compareChangedGroup(final HttpServletRequest request) {        List<ConfigGroupEnum> changedGroup = new ArrayList<>(ConfigGroupEnum.values().length);        for (ConfigGroupEnum group : ConfigGroupEnum.values()) {            // The md5 value and lastModifyTime of the data on the gateway side            String[] params = StringUtils.split(request.getParameter(group.name()), ',');            if (params == null || params.length != 2) {                throw new ShenyuException("group param invalid:" + request.getParameter(group.name()));            }            String clientMd5 = params[0];            long clientModifyTime = NumberUtils.toLong(params[1]);            ConfigDataCache serverCache = CACHE.get(group.name());            // do check. determine if the group data has changed            if (this.checkCacheDelayAndUpdate(serverCache, clientMd5, clientModifyTime)) {                changedGroup.add(group);            }        }        return changedGroup;    }
  • LongPollingClient

No change data, then the client (in this case the gateway) is put into the blocking queue. The blocking time is 60 seconds, i.e. after 60 seconds remove and respond to the client.

class LongPollingClient implements Runnable {      // omitted other logic            @Override        public void run() {            try {                // Removal after 60 seconds and response to the client                this.asyncTimeoutFuture = scheduler.schedule(() -> {                    clients.remove(LongPollingClient.this);                    List<ConfigGroupEnum> changedGroups = compareChangedGroup((HttpServletRequest) asyncContext.getRequest());                    sendResponse(changedGroups);                }, timeoutTime, TimeUnit.MILLISECONDS);
                // Add to blocking queue                clients.add(this);
            } catch (Exception ex) {                log.error("add long polling client error", ex);            }        }
        /**         * Send response.         *         * @param changedGroups the changed groups         */        void sendResponse(final List<ConfigGroupEnum> changedGroups) {            // cancel scheduler            if (null != asyncTimeoutFuture) {                asyncTimeoutFuture.cancel(false);            }            // Groups responding to changes            generateResponse((HttpServletResponse) asyncContext.getResponse(), changedGroups);            asyncContext.complete();        }    }

3.4 Get Change Data Interface#

  • /configs/fetch: get change data;

Get the grouped data and return the result according to the parameters passed in by the gateway. The main implementation method is longPollingListener.fetchConfig().


@ConditionalOnBean(HttpLongPollingDataChangedListener.class)@RestController@RequestMapping("/configs")public class ConfigController {
    private final HttpLongPollingDataChangedListener longPollingListener;
    public ConfigController(final HttpLongPollingDataChangedListener longPollingListener) {        this.longPollingListener = longPollingListener;    }
    /**     * Fetch configs shenyu result.     * @param groupKeys the group keys     * @return the shenyu result     */    @GetMapping("/fetch")    public ShenyuAdminResult fetchConfigs(@NotNull final String[] groupKeys) {        Map<String, ConfigData<?>> result = Maps.newHashMap();        for (String groupKey : groupKeys) {            ConfigData<?> data = longPollingListener.fetchConfig(ConfigGroupEnum.valueOf(groupKey));            result.put(groupKey, data);        }        return ShenyuAdminResult.success(ShenyuResultMessage.SUCCESS, result);    }      // Other interfaces are omitted
}
  • AbstractDataChangedListener#fetchConfig()

Data fetching is taken directly from CACHE, and then matched and encapsulated according to different grouping types.

public abstract class AbstractDataChangedListener implements DataChangedListener, InitializingBean {        // ......        /**     * fetch configuration from cache.     * @param groupKey the group key     * @return the configuration data     */    public ConfigData<?> fetchConfig(final ConfigGroupEnum groupKey) {        // get data from CACHE        ConfigDataCache config = CACHE.get(groupKey.name());        switch (groupKey) {            case APP_AUTH: // app auth data                return buildConfigData(config, AppAuthData.class);            case PLUGIN: // plugin data                return buildConfigData(config, PluginData.class);            case RULE:   // rule data                return buildConfigData(config, RuleData.class);            case SELECTOR:  // selector data                return buildConfigData(config, SelectorData.class);            case META_DATA: // meta data                 return buildConfigData(config, MetaData.class);            default:  // other data type, throw exception                throw new IllegalStateException("Unexpected groupKey: " + groupKey);        }    }        // ......}

3.5 Data Change#

In the previous websocket data synchronization and zookeeper data synchronization source code analysis article, we know that the admin side data synchronization design structure is as follows.

Various data change listeners are subclasses of DataChangedListener.

When the data is modified on the admin side, event notifications are sent through the Spring event handling mechanism. The sending logic is as follows.


/** * Event forwarders, which forward the changed events to each ConfigEventListener. * Data change event distributor: synchronize the change data to ShenYu gateway when there is a data change in admin side * Data changes rely on Spring's event-listening mechanism: ApplicationEventPublisher --> ApplicationEvent --> ApplicationListener * */@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
  // other logic omitted
    /**     * Call this method when there are data changes     * @param event     */    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listeners (it's generally good to use a kind of data synchronization)        for (DataChangedListener listener : listeners) {            // What kind of data has changed            switch (event.getGroupKey()) {                case APP_AUTH: // app auth data                    listener.onAppAuthChanged((List<AppAuthData>) event.getSource(), event.getEventType());                    break;                case PLUGIN:  // plugin data                    listener.onPluginChanged((List<PluginData>) event.getSource(), event.getEventType());                    break;                case RULE:    // rule data                    listener.onRuleChanged((List<RuleData>) event.getSource(), event.getEventType());                    break;                case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                    // pull and save API document on seletor changed                    applicationContext.getBean(LoadServiceDocEntry.class).loadDocOnSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                    break;                case META_DATA:  // meta data                    listener.onMetaDataChanged((List<MetaData>) event.getSource(), event.getEventType());                    break;                default:  // other data type, throw exception                    throw new IllegalStateException("Unexpected value: " + event.getGroupKey());            }        }    }}

Suppose, the plugin information is modified and the data is synchronized by http long polling, then the actual call to listener.onPluginChanged() is org.apache.shenyu.admin.listener. AbstractDataChangedListener#onPluginChanged.

    /**     * In the operation of the admin, there is an update of the plugin occurred     * @param changed   the changed     * @param eventType the event type     */    @Override    public void onPluginChanged(final List<PluginData> changed, final DataEventTypeEnum eventType) {        if (CollectionUtils.isEmpty(changed)) {            return;        }        // update CACHE        this.updatePluginCache();        // execute change task        this.afterPluginChanged(changed, eventType);    }

There are two processing operations, one is to update the memory CACHE, which was analyzed earlier, and the other is to execute the change task, which is executed in the thread pool.

  • HttpLongPollingDataChangedListener#afterPluginChanged()
    @Override    protected void afterPluginChanged(final List<PluginData> changed, final DataEventTypeEnum eventType) {        // execute by thread pool        scheduler.execute(new DataChangeTask(ConfigGroupEnum.PLUGIN));    }
  • DataChangeTask

Data change task: remove the clients in the blocking queue in turn and send a response to notify the gateway that a group of data has changed.

class DataChangeTask implements Runnable {        //other logic omitted          @Override        public void run() {            // If the client in the blocking queue exceeds the given value of 100, it is executed in batches            if (clients.size() > httpSyncProperties.getNotifyBatchSize()) {                List<LongPollingClient> targetClients = new ArrayList<>(clients.size());                clients.drainTo(targetClients);                List<List<LongPollingClient>> partitionClients = Lists.partition(targetClients, httpSyncProperties.getNotifyBatchSize());               // batch execution                partitionClients.forEach(item -> scheduler.execute(() -> doRun(item)));            } else {                // execute task                doRun(clients);            }        }
        private void doRun(final Collection<LongPollingClient> clients) {            // Notify all clients that a data change has occurred            for (Iterator<LongPollingClient> iter = clients.iterator(); iter.hasNext();) {                LongPollingClient client = iter.next();                iter.remove();                // send response to client                client.sendResponse(Collections.singletonList(groupKey));                Log.info("send response with the changed group,ip={}, group={}, changeTime={}", client.ip, groupKey, changeTime);            }        }    }

At this point, the data synchronization logic on the admin side is analyzed. In the http long polling based data synchronization is, it has three main functions.

  • providing a data change listening interface.
  • providing the interface to get the changed data.
  • When there is a data change, remove the client in the blocking queue and respond to the result.

Finally, three diagrams describe the long polling task flow on the admin side.

  • /configs/listener data change listener interface.

  • /configs/fetch fetch change data interface.

  • Update data in the admin backend management system for data synchronization.

4. Summary#

This article focuses on the source code analysis of http long polling data synchronization in the ShenYu gateway. The main knowledge points involved are as follows.

  • http long polling is initiated by the gateway side, which constantly requests the admin side.
  • change data at group granularity (authentication information, plugins, selectors, rules, metadata).
  • http long polling results in getting only the change group, and another request needs to be initiated to get the group data.
  • Whether the data is updated or not is determined by the md5 value and the modification time lastModifyTime.

WebSocket Data Synchronization Source Code Analysis

· 22 min read
Apache ShenYu Committer

In ShenYu gateway, data synchronization refers to how to synchronize the updated data to the gateway after the data is sent in the background management system. The Apache ShenYu gateway currently supports data synchronization for ZooKeeper, WebSocket, http long poll, Nacos, etcd and Consul. The main content of this article is based on WebSocket data synchronization source code analysis.

This paper based on shenyu-2.4.0 version of the source code analysis, the official website of the introduction of please refer to the Data Synchronization Design .

1. About WebSocket Communication#

The WebSocket protocol was born in 2008 and became an international standard in 2011. It can be two-way communication, the server can take the initiative to push information to the client, the client can also take the initiative to send information to the server. The WebSocket protocol is based on the TCP protocol and belongs to the application layer, with low performance overhead and high communication efficiency. The protocol identifier is ws.

2. Admin Data Sync#

Let's trace the source code from a real case, such as adding a selector data in the background management system:

2.1 Accept Changed Data#

  • SelectorController.createSelector()

Enter the createSelector() method of the SelectorController class, which validates data, adds or updates data, and returns results.

@Validated@RequiredArgsConstructor@RestController@RequestMapping("/selector")public class SelectorController {        @PostMapping("")    public ShenyuAdminResult createSelector(@Valid @RequestBody final SelectorDTO selectorDTO) { // @Valid 数校验        // create or update data        Integer createCount = selectorService.createOrUpdate(selectorDTO);        // return result        return ShenyuAdminResult.success(ShenyuResultMessage.CREATE_SUCCESS, createCount);    }        // ......}

2.2 Handle Data#

  • SelectorServiceImpl.createOrUpdate()

Convert data in the SelectorServiceImpl class using the createOrUpdate() method, save it to the database, publish the event, update upstream.

@RequiredArgsConstructor@Servicepublic class SelectorServiceImpl implements SelectorService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;        @Override    @Transactional(rollbackFor = Exception.class)    public int createOrUpdate(final SelectorDTO selectorDTO) {        int selectorCount;        // build data DTO --> DO        SelectorDO selectorDO = SelectorDO.buildSelectorDO(selectorDTO);        List<SelectorConditionDTO> selectorConditionDTOs = selectorDTO.getSelectorConditions();        // insert or update ?        if (StringUtils.isEmpty(selectorDTO.getId())) {            //  insert into data            selectorCount = selectorMapper.insertSelective(selectorDO);            // insert into condition data            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                selectorConditionMapper.insertSelective(SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO));            });            // check selector add            if (dataPermissionMapper.listByUserId(JwtUtils.getUserInfo().getUserId()).size() > 0) {                DataPermissionDTO dataPermissionDTO = new DataPermissionDTO();                dataPermissionDTO.setUserId(JwtUtils.getUserInfo().getUserId());                dataPermissionDTO.setDataId(selectorDO.getId());                dataPermissionDTO.setDataType(AdminConstants.SELECTOR_DATA_TYPE);                dataPermissionMapper.insertSelective(DataPermissionDO.buildPermissionDO(dataPermissionDTO));            }
        } else {            // update data, delete and then insert            selectorCount = selectorMapper.updateSelective(selectorDO);            //delete rule condition then add            selectorConditionMapper.deleteByQuery(new SelectorConditionQuery(selectorDO.getId()));            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                SelectorConditionDO selectorConditionDO = SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO);                selectorConditionMapper.insertSelective(selectorConditionDO);            });        }        // publish event        publishEvent(selectorDO, selectorConditionDTOs);
        // update upstream        updateDivideUpstream(selectorDO);        return selectorCount;    }            // ......    }

In the Service class to persist data, i.e. to the database, this should be familiar, not expand. The update upstream operation is analyzed in the corresponding section below, focusing on the publish event operation, which performs data synchronization.

The logic of the publishEvent() method is to find the plugin corresponding to the selector, build the conditional data, and publish the change data.

       private void publishEvent(final SelectorDO selectorDO, final List<SelectorConditionDTO> selectorConditionDTOs) {        // find plugin of selector        PluginDO pluginDO = pluginMapper.selectById(selectorDO.getPluginId());        // build condition data        List<ConditionData> conditionDataList =                selectorConditionDTOs.stream().map(ConditionTransfer.INSTANCE::mapToSelectorDTO).collect(Collectors.toList());        // publish event        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, DataEventTypeEnum.UPDATE,                Collections.singletonList(SelectorDO.transFrom(selectorDO, pluginDO.getName(), conditionDataList))));    }

Change data released by eventPublisher.PublishEvent() is complete, the eventPublisher object is a ApplicationEventPublisher class, The fully qualified class name is org.springframework.context.ApplicationEventPublisher. Here we see that publishing data is done through Spring related functionality.

ApplicationEventPublisher

When a state change, the publisher calls ApplicationEventPublisher of publishEvent method to release an event, Spring container broadcast event for all observers, The observer's onApplicationEvent method is called to pass the event object to the observer. There are two ways to call publishEvent method, one is to implement the interface by the container injection ApplicationEventPublisher object and then call the method, the other is a direct call container, the method of two methods of publishing events not too big difference.

  • ApplicationEventPublisher: publish event;
  • ApplicationEvent: Spring event, record the event source, time, and data;
  • ApplicationListener: event listener, observer.

In Spring event publishing mechanism, there are three objects,

An object is a publish event ApplicationEventPublisher, in ShenYu through the constructor in the injected a eventPublisher.

The other object is ApplicationEvent , inherited from ShenYu through DataChangedEvent, representing the event object.

public class DataChangedEvent extends ApplicationEvent {//......}

The last object is ApplicationListener in ShenYu in through DataChangedEventDispatcher class implements this interface, as the event listener, responsible for handling the event object.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
    //......    }

2.3 Dispatch Data#

  • DataChangedEventDispatcher.onApplicationEvent()

Released when the event is completed, will automatically enter the DataChangedEventDispatcher class onApplicationEvent() method of handling events.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
  /**     * This method is called when there are data changes   * @param event     */    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)      for (DataChangedListener listener : listeners) {            // What kind of data has changed        switch (event.getGroupKey()) {                case APP_AUTH: // app auth data                    listener.onAppAuthChanged((List<AppAuthData>) event.getSource(), event.getEventType());                    break;                case PLUGIN:  // plugin data                    listener.onPluginChanged((List<PluginData>) event.getSource(), event.getEventType());                    break;                case RULE:    // rule data                    listener.onRuleChanged((List<RuleData>) event.getSource(), event.getEventType());                    break;                case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                    break;                case META_DATA:  // metadata                    listener.onMetaDataChanged((List<MetaData>) event.getSource(), event.getEventType());                    break;                default:  // Other types throw exception                  throw new IllegalStateException("Unexpected value: " + event.getGroupKey());            }        }    }    }

When there is a data change, the onApplicationEvent method is called and all the data change listeners are iterated to determine the data type and handed over to the appropriate data listener for processing.

ShenYu groups all the data into five categories: APP_AUTH, PLUGIN, RULE, SELECTOR and META_DATA.

Here the data change listener (DataChangedListener) is an abstraction of the data synchronization policy. Its concrete implementation is:

These implementation classes are the synchronization strategies currently supported by ShenYu:

  • WebsocketDataChangedListener: data synchronization based on Websocket;
  • ZookeeperDataChangedListener:data synchronization based on Zookeeper;
  • ConsulDataChangedListener: data synchronization based on Consul;
  • EtcdDataDataChangedListener:data synchronization based on etcd;
  • HttpLongPollingDataChangedListener:data synchronization based on http long polling;
  • NacosDataChangedListener:data synchronization based on nacos;

Given that there are so many implementation strategies, how do you decide which to use?

Because this paper is based on websocket data synchronization source code analysis, so here to WebsocketDataChangedListener as an example, the analysis of how it is loaded and implemented.

A global search in the source code project shows that its implementation is done in the DataSyncConfiguration class.

/** * Data Sync Configuration * By springboot conditional assembly * The type Data sync configuration. */@Configurationpublic class DataSyncConfiguration {     /**     * The WebsocketListener(default strategy).     */    @Configuration    @ConditionalOnProperty(name = "shenyu.sync.websocket.enabled", havingValue = "true", matchIfMissing = true)    @EnableConfigurationProperties(WebsocketSyncProperties.class)    static class WebsocketListener {
        /**         * Config event listener data changed listener.         * @return the data changed listener         */        @Bean        @ConditionalOnMissingBean(WebsocketDataChangedListener.class)        public DataChangedListener websocketDataChangedListener() {            return new WebsocketDataChangedListener();        }
        /**         * Websocket collector.         * Websocket collector class: establish a connection, send a message, close the connection and other operations         * @return the websocket collector         */        @Bean        @ConditionalOnMissingBean(WebsocketCollector.class)        public WebsocketCollector websocketCollector() {            return new WebsocketCollector();        }
        /**         * Server endpoint exporter          *         * @return the server endpoint exporter         */        @Bean        @ConditionalOnMissingBean(ServerEndpointExporter.class)        public ServerEndpointExporter serverEndpointExporter() {            return new ServerEndpointExporter();        }    }        //......}

This configuration class is implemented through the SpringBoot conditional assembly class. The WebsocketListener class has several annotations:

  • @Configuration: Configuration file, application context;

  • @ConditionalOnProperty(name = "shenyu.sync.websocket.enabled", havingValue = "true", matchIfMissing = true): attribute condition. The configuration class takes effect only when the condition is met. That is, when we have the following configuration, websocket is used for data synchronization. Note, however, the matchIfMissing = true attribute, which means that this configuration class will work if you don't have the following configuration. Data synchronization based on webSocket is officially recommended and the default.

    shenyu:    sync:    websocket:      enabled: true
  • @EnableConfigurationProperties:enable configuration properties;

When we take the initiative to configuration, use the websocket data synchronization, WebsocketDataChangedListener is generated. So in the event handler onApplicationEvent(), it goes to the corresponding listener. In our case, a selector is to increase the new data, the data by adopting the websocket, so, the code will enter the WebsocketDataChangedListener selector data change process.

    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)        for (DataChangedListener listener : listeners) {            // What kind of data has changed             switch (event.getGroupKey()) {                                    // other logic is omitted              case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());   // WebsocketDataChangedListener handle selector data                    break;         }    }

2.4 Websocket Data Changed Listener#

  • WebsocketDataChangedListener.onSelectorChanged()

In the onSelectorChanged() method, the data is encapsulated into WebsocketData and then sent via webSocketCollector.send().

    // selector data has been updated    @Override    public void onSelectorChanged(final List<SelectorData> selectorDataList, final DataEventTypeEnum eventType) {        // build WebsocketData         WebsocketData<SelectorData> websocketData =                new WebsocketData<>(ConfigGroupEnum.SELECTOR.name(), eventType.name(), selectorDataList);        // websocket send data        WebsocketCollector.send(GsonUtils.getInstance().toJson(websocketData), eventType);    }

2.5 Websocket Send Data#

  • WebsocketCollector.send()

In the send() method, the type of synchronization is determined and processed according to the different types.

@Slf4j@ServerEndpoint(value = "/websocket", configurator = WebsocketConfigurator.class)public class WebsocketCollector {    /**     * Send.     *     * @param message the message     * @param type    the type     */    public static void send(final String message, final DataEventTypeEnum type) {        if (StringUtils.isNotBlank(message)) {            // If it's MYSELF (first full synchronization)          if (DataEventTypeEnum.MYSELF == type) {                // get the session from ThreadLocal            Session session = (Session) ThreadLocalUtil.get(SESSION_KEY);                if (session != null) {                    // send full data to the session                   sendMessageBySession(session, message);                }            } else {                // subsequent incremental synchronization                // synchronize change data to all sessions               SESSION_SET.forEach(session -> sendMessageBySession(session, message));            }        }    }
    private static void sendMessageBySession(final Session session, final String message) {        try {            // The message is sent through the Websocket session           session.getBasicRemote().sendText(message);        } catch (IOException e) {            log.error("websocket send result is exception: ", e);        }    }}

The example we give is a new operation, an incremental synchronization, so it goes

SESSION_SET.forEach(session -> sendMessageBySession(session, message));

then through

session.getBasicRemote().sendText(message);

the data was sent out.

At this point, when data changes occur on the admin side, the changed data is increments sent to the gateway through the WebSocket.

At this point, do you have any questions? For example, where does session come from? How does the gateway establish a connection with admin?

Don't worry, let's do the synchronization analysis on the gateway side.

However, before continuing with the source code analysis, let's use a diagram to string together the above analysis process.

3. Gateway Data Sync#

Assume ShenYu gateway is already in normal operation, using the data synchronization mode is also websocket. How does the gateway receive and process new selector data from admin and send it to the gateway via WebSocket? Let's continue our source code analysis to find out.

3.1 WebsocketClient Accept Data#

  • ShenyuWebsocketClient.onMessage()

There is a ShenyuWebsocketClient class on the gateway, which inherits from WebSocketClient and can establish a connection and communicate with WebSocket.

public final class ShenyuWebsocketClient extends WebSocketClient {  // ......}

After sending data via websocket on the admin side, ShenyuWebsocketClient can receive data via onMessage() and then process it itself.

public final class ShenyuWebsocketClient extends WebSocketClient {      // execute after receiving the message    @Override    public void onMessage(final String result) {        // handle accept data        handleResult(result);    }        private void handleResult(final String result) {        // data deserialization        WebsocketData websocketData = GsonUtils.getInstance().fromJson(result, WebsocketData.class);        // which data types, plug-ins, selectors, rules...        ConfigGroupEnum groupEnum = ConfigGroupEnum.acquireByName(websocketData.getGroupType());        // which operation type, update, delete...              String eventType = websocketData.getEventType();        String json = GsonUtils.getInstance().toJson(websocketData.getData());
        // handle data        websocketDataHandler.executor(groupEnum, json, eventType);    }}

After receiving the data, first has carried on the deserialization operation, read the data type and operation type, then hand over to websocketDataHandler.executor() for processing.

3.2 Execute Websocket Data Handler#

  • WebsocketDataHandler.executor()

A Websocket data handler is created in factory mode, providing one handler for each data type:

plugin --> PluginDataHandler;

selector --> SelectorDataHandler;

rule --> RuleDataHandler;

auth --> AuthDataHandler;

metadata --> MetaDataHandler.


/** * Create Websocket data handlers through factory mode * The type Websocket cache handler. */public class WebsocketDataHandler {
    private static final EnumMap<ConfigGroupEnum, DataHandler> ENUM_MAP = new EnumMap<>(ConfigGroupEnum.class);
    /**     * Instantiates a new Websocket data handler.     * @param pluginDataSubscriber the plugin data subscriber     * @param metaDataSubscribers  the meta data subscribers     * @param authDataSubscribers  the auth data subscribers     */    public WebsocketDataHandler(final PluginDataSubscriber pluginDataSubscriber,                                final List<MetaDataSubscriber> metaDataSubscribers,                                final List<AuthDataSubscriber> authDataSubscribers) {        // plugin --> PluginDataHandler        ENUM_MAP.put(ConfigGroupEnum.PLUGIN, new PluginDataHandler(pluginDataSubscriber));        // selector --> SelectorDataHandler        ENUM_MAP.put(ConfigGroupEnum.SELECTOR, new SelectorDataHandler(pluginDataSubscriber));        // rule --> RuleDataHandler        ENUM_MAP.put(ConfigGroupEnum.RULE, new RuleDataHandler(pluginDataSubscriber));        // auth --> AuthDataHandler        ENUM_MAP.put(ConfigGroupEnum.APP_AUTH, new AuthDataHandler(authDataSubscribers));        // metadata --> MetaDataHandler        ENUM_MAP.put(ConfigGroupEnum.META_DATA, new MetaDataHandler(metaDataSubscribers));    }
    /**     * Executor.     *     * @param type      the type     * @param json      the json     * @param eventType the event type     */    public void executor(final ConfigGroupEnum type, final String json, final String eventType) {        // find the corresponding data handler based on the data type        ENUM_MAP.get(type).handle(json, eventType);    }}

Different data types have different ways of handling data, so there are different implementation classes. But they also have the same processing logic between them, so they can be implemented through the template approach to design patterns. The same logic is placed in the handle() method of the abstract class, and the different logic is handed over to the respective implementation class.

In our case, a new selector is added, so it will be passed to the SelectorDataHandler for data processing.

3.3 Determine the Event Type#

  • AbstractDataHandler.handle()

Implement common logical handling of data changes: invoke different methods based on different operation types.


public abstract class AbstractDataHandler<T> implements DataHandler {
    /**     * Convert list.     * The different logic is implemented by the respective implementation classes     * @param json the json     * @return the list     */    protected abstract List<T> convert(String json);
    /**     * Do refresh.     * The different logic is implemented by the respective implementation classes     * @param dataList the data list     */    protected abstract void doRefresh(List<T> dataList);
    /**     * Do update.     * The different logic is implemented by the respective implementation classes     * @param dataList the data list     */    protected abstract void doUpdate(List<T> dataList);
    /**     * Do delete.     * The different logic is implemented by the respective implementation classes     * @param dataList the data list     */    protected abstract void doDelete(List<T> dataList);
    // General purpose logic, abstract class implementation    @Override    public void handle(final String json, final String eventType) {        List<T> dataList = convert(json);        if (CollectionUtils.isNotEmpty(dataList)) {            DataEventTypeEnum eventTypeEnum = DataEventTypeEnum.acquireByName(eventType);            switch (eventTypeEnum) {                case REFRESH:                case MYSELF:                    doRefresh(dataList);  //Refreshes data and synchronizes all data                    break;                case UPDATE:                case CREATE:                    doUpdate(dataList); // Update or create data, incremental synchronization                    break;                case DELETE:                    doDelete(dataList);  // delete data                    break;                default:                    break;            }        }    }}

New selector data, new operation, through switch-case into doUpdate() method.

3.4 Enter the Specific Data Handler#

  • SelectorDataHandler.doUpdate()

/** * The type Selector data handler. */@RequiredArgsConstructorpublic class SelectorDataHandler extends AbstractDataHandler<SelectorData> {
    private final PluginDataSubscriber pluginDataSubscriber;
    //......
    // update data    @Override    protected void doUpdate(final List<SelectorData> dataList) {        dataList.forEach(pluginDataSubscriber::onSelectorSubscribe);    }}

Iterate over the data and enter the onSelectorSubscribe() method.

  • PluginDataSubscriber.onSelectorSubscribe()

It has no additional logic and calls the subscribeDataHandler() method directly. Within methods, there are data types (plugins, selectors, or rules) and action types (update or delete) to perform different logic.

/** * The common plugin data subscriber, responsible for handling all plug-in, selector, and rule information */public class CommonPluginDataSubscriber implements PluginDataSubscriber {    //......     // handle selector data    @Override    public void onSelectorSubscribe(final SelectoData selectorData) {        subscribeDataHandler(selectorData, DataEventTypeEnum.UPDATE);    }            // A subscription data handler that handles updates or deletions of data    private <T> void subscribeDataHandler(final T classData, final DataEventTypeEnum dataType) {        Optional.ofNullable(classData).ifPresent(data -> {            // plugin data            if (data instanceof PluginData) {                PluginData pluginData = (PluginData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                     BaseDataCache.getInstance().cachePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.handlerPlugin(pluginData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.removePlugin(pluginData));                }            } else if (data instanceof SelectorData) {  // selector data                SelectorData selectorData = (SelectorData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                     Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.removeSelector(selectorData));                }            } else if (data instanceof RuleData) {  // rule data                RuleData ruleData = (RuleData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.handlerRule(ruleData));                } else if (dataType == DataEventTypeEnum.DELETE) { // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.removeRule(ruleData));                }            }        });    }    }

Adding a selector will enter the following logic:

// save the data to gateway memoryBaseDataCache.getInstance().cacheSelectData(selectorData);// If each plugin has its own processing logic, then do itOptional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));

One is to save the data to the gateway's memory. BaseDataCache is the class that ultimately caches data, implemented in a singleton pattern. The selector data is stored in the SELECTOR_MAP Map. In the subsequent use, also from this data.

public final class BaseDataCache {    // private instance    private static final BaseDataCache INSTANCE = new BaseDataCache();    // private constructor    private BaseDataCache() {    }        /**     * Gets instance.     *  public method     * @return the instance     */    public static BaseDataCache getInstance() {        return INSTANCE;    }        /**      * A Map of the cache selector data     * pluginName -> SelectorData.     */    private static final ConcurrentMap<String, List<SelectorData>> SELECTOR_MAP = Maps.newConcurrentMap();        public void cacheSelectData(final SelectorData selectorData) {        Optional.ofNullable(selectorData).ifPresent(this::selectorAccept);    }           /**     * cache selector data.     * @param data the selector data     */    private void selectorAccept(final SelectorData data) {        String key = data.getPluginName();        if (SELECTOR_MAP.containsKey(key)) { // Update operation, delete before insert            List<SelectorData> existList = SELECTOR_MAP.get(key);            final List<SelectorData> resultList = existList.stream().filter(r -> !r.getId().equals(data.getId())).collect(Collectors.toList());            resultList.add(data);            final List<SelectorData> collect = resultList.stream().sorted(Comparator.comparing(SelectorData::getSort)).collect(Collectors.toList());            SELECTOR_MAP.put(key, collect);        } else {  // Add new operations directly to Map            SELECTOR_MAP.put(key, Lists.newArrayList(data));        }    }    }

Second, if each plugin has its own processing logic, then do it. Through the IDEA editor, you can see that after adding a selector, there are the following plugins and processing. We're not going to expand it here.

After the above source tracing, and through a practical case, in the admin side to add a selector data, will websocket data synchronization process analysis cleared.

Let's use the following figure to concatenate the data synchronization process on the gateway side:

The data synchronization process has been analyzed, but there are still some problems that have not been analyzed, that is, how does the gateway establish a connection with admin?

4. The Gateway Establishes a Websocket Connection with Admin#

  • websocket config

With the following configuration in the gateway configuration file and the dependency introduced, the websocket related service is started.

shenyu:    file:      enabled: true    cross:      enabled: true    dubbo :      parameter: multi    sync:      websocket :  # Use websocket for data synchronization        urls: ws://localhost:9095/websocket   # websocket address of admin        allowOrigin: ws://localhost:9195

Add a dependency on websocket in the gateway.

<!--shenyu data sync start use websocket--><dependency>    <groupId>org.apache.shenyu</groupId>    <artifactId>shenyu-spring-boot-starter-sync-data-websocket</artifactId>    <version>${project.version}</version></dependency>
  • Websocket Data Sync Config

The associated bean is created by conditional assembly of springboot. In the gateway started, if we configure the shenyu.sync.websocket.urls, then websocket data synchronization configuration will be loaded. The dependency loading is done through the springboot starter.


/** * WebsocketSyncDataService * Conditional injection is implemented through SpringBoot * Websocket sync data configuration for spring boot. */@Configuration@ConditionalOnClass(WebsocketSyncDataService.class)@ConditionalOnProperty(prefix = "shenyu.sync.websocket", name = "urls")@Slf4jpublic class WebsocketSyncDataConfiguration {
    /**     * Websocket sync data service.     * @param websocketConfig   the websocket config     * @param pluginSubscriber the plugin subscriber     * @param metaSubscribers   the meta subscribers     * @param authSubscribers   the auth subscribers     * @return the sync data service     */    @Bean    public SyncDataService websocketSyncDataService(final ObjectProvider<WebsocketConfig> websocketConfig, final ObjectProvider<PluginDataSubscriber> pluginSubscriber,                                           final ObjectProvider<List<MetaDataSubscriber>> metaSubscribers, final ObjectProvider<List<AuthDataSubscriber>> authSubscribers) {        log.info("you use websocket sync shenyu data.......");        return new WebsocketSyncDataService(websocketConfig.getIfAvailable(WebsocketConfig::new), pluginSubscriber.getIfAvailable(),                metaSubscribers.getIfAvailable(Collections::emptyList), authSubscribers.getIfAvailable(Collections::emptyList));    }
    /**     * Config websocket config.     *     * @return the websocket config     */    @Bean    @ConfigurationProperties(prefix = "shenyu.sync.websocket")    public WebsocketConfig websocketConfig() {        return new WebsocketConfig();      }}

Start a new spring.factories file in the resources/META-INF directory of your project and specify the configuration classes in the file.

  • WebsocketSyncDataService

The following things are done in 'WebsocketSyncDataService' :

  • Read configuration urls, which represent the admin side of the synchronization address, if there are more than one, use "," split;

  • Create a scheduling thread pool, with each admin assigned one to perform scheduled tasks;

  • Create ShenyuWebsocketClient, assign one to each admin, set up websocket communication with admin;

  • Start connection with admin end websocket;

  • Executes a scheduled task every 10 seconds. The main function is to determine whether the websocket connection has been disconnected, if so, try to reconnect. If not, a ping-pong test is performed.


/** * Websocket sync data service. */@Slf4jpublic class WebsocketSyncDataService implements SyncDataService, AutoCloseable {
    private final List<WebSocketClient> clients = new ArrayList<>();
    private final ScheduledThreadPoolExecutor executor;
    /**     * Instantiates a new Websocket sync cache.     * @param websocketConfig      the websocket config     * @param pluginDataSubscriber the plugin data subscriber     * @param metaDataSubscribers  the meta data subscribers     * @param authDataSubscribers  the auth data subscribers     */    public WebsocketSyncDataService(final WebsocketConfig websocketConfig,                                    final PluginDataSubscriber pluginDataSubscriber,                                    final List<MetaDataSubscriber> metaDataSubscribers,                                    final List<AuthDataSubscriber> authDataSubscribers) {        // If there are multiple synchronization addresses on the admin side, use commas (,) to separate them        String[] urls = StringUtils.split(websocketConfig.getUrls(), ",");        // Create a scheduling thread pool, one for each admin        executor = new ScheduledThreadPoolExecutor(urls.length, ShenyuThreadFactory.create("websocket-connect", true));        for (String url : urls) {            try {                //Create a WebsocketClient and assign one to each admin                clients.add(new ShenyuWebsocketClient(new URI(url), Objects.requireNonNull(pluginDataSubscriber), metaDataSubscribers, authDataSubscribers));            } catch (URISyntaxException e) {                log.error("websocket url({}) is error", url, e);            }        }        try {            for (WebSocketClient client : clients) {                // Establish a connection with the WebSocket Server                boolean success = client.connectBlocking(3000, TimeUnit.MILLISECONDS);                if (success) {                    log.info("websocket connection is successful.....");                } else {                    log.error("websocket connection is error.....");                }
                // Run a scheduled task every 10 seconds                // The main function is to check whether the WebSocket connection is disconnected. If the connection is disconnected, retry the connection.                // If it is not disconnected, the ping-pong test is performed                executor.scheduleAtFixedRate(() -> {                    try {                        if (client.isClosed()) {                            boolean reconnectSuccess = client.reconnectBlocking();                            if (reconnectSuccess) {                                log.info("websocket reconnect server[{}] is successful.....", client.getURI().toString());                            } else {                                log.error("websocket reconnection server[{}] is error.....", client.getURI().toString());                            }                        } else {                            client.sendPing();                            log.debug("websocket send to [{}] ping message successful", client.getURI().toString());                        }                    } catch (InterruptedException e) {                        log.error("websocket connect is error :{}", e.getMessage());                    }                }, 10, 10, TimeUnit.SECONDS);            }            /* client.setProxy(new Proxy(Proxy.Type.HTTP, new InetSocketAddress("proxyaddress", 80)));*/        } catch (InterruptedException e) {            log.info("websocket connection...exception....", e);        }
    }
    @Override    public void close() {        // close websocket client        for (WebSocketClient client : clients) {            if (!client.isClosed()) {                client.close();            }        }        // close threadpool        if (Objects.nonNull(executor)) {            executor.shutdown();        }    }}
  • ShenyuWebsocketClient

The WebSocket client created in ShenYu to communicate with the admin side. After the connection is successfully established for the first time, full data is synchronized and incremental data is subsequently synchronized.


/** * The type shenyu websocket client. */@Slf4jpublic final class ShenyuWebsocketClient extends WebSocketClient {        private volatile boolean alreadySync = Boolean.FALSE;        private final WebsocketDataHandler websocketDataHandler;        /**     * Instantiates a new shenyu websocket client.     * @param serverUri             the server uri       * @param pluginDataSubscriber the plugin data subscriber      * @param metaDataSubscribers   the meta data subscribers      * @param authDataSubscribers   the auth data subscribers      */    public ShenyuWebsocketClient(final URI serverUri, final PluginDataSubscriber pluginDataSubscriber,final List<MetaDataSubscriber> metaDataSubscribers, final List<AuthDataSubscriber> authDataSubscribers) {        super(serverUri);        this.websocketDataHandler = new WebsocketDataHandler(pluginDataSubscriber, metaDataSubscribers, authDataSubscribers);    }
    // Execute after the connection is successfully established    @Override    public void onOpen(final ServerHandshake serverHandshake) {        // To prevent re-execution when reconnecting, use alreadySync to determine        if (!alreadySync) {            // Synchronize all data, type MYSELF            send(DataEventTypeEnum.MYSELF.name());            alreadySync = true;        }    }
    // Execute after receiving the message    @Override    public void onMessage(final String result) {        // handle data        handleResult(result);    }        // Execute after shutdown    @Override    public void onClose(final int i, final String s, final boolean b) {        this.close();    }        // Execute after error    @Override    public void onError(final Exception e) {        this.close();    }        @SuppressWarnings("ALL")    private void handleResult(final String result) {        // Data deserialization        WebsocketData websocketData = GsonUtils.getInstance().fromJson(result, WebsocketData.class);        // Which data types, plugins, selectors, rules...        ConfigGroupEnum groupEnum = ConfigGroupEnum.acquireByName(websocketData.getGroupType());        // Which operation type, update, delete...        String eventType = websocketData.getEventType();        String json = GsonUtils.getInstance().toJson(websocketData.getData());
        // handle data        websocketDataHandler.executor(groupEnum, json, eventType);    }}

5. Summary#

This paper through a practical case, the data synchronization principle of websocket source code analysis. The main knowledge points involved are as follows:

  • WebSocket supports bidirectional communication and has good performance. It is recommended.

  • Complete event publishing and listening via Spring;

  • Support multiple synchronization strategies through abstract DataChangedListener interface, interface oriented programming;

  • Use factory mode to create WebsocketDataHandler to handle different data types;

  • Implement AbstractDataHandler using template method design patterns to handle general operation types;

  • Use singleton design pattern to cache data class BaseDataCache;

  • Loading of configuration classes via conditional assembly of SpringBoot and starter loading mechanism.

Nacos Data Synchronization Source Code Analysis

· 22 min read
Apache ShenYu Contributor

Apache ShenYu is an asynchronous, high-performance, cross-language, responsive API gateway.

In ShenYu gateway, data synchronization refers to how to synchronize the updated data to the gateway after the data is sent in the background management system. The Apache ShenYu gateway currently supports data synchronization for ZooKeeper, WebSocket, http long poll, Nacos, etcd and Consul. The main content of this article is based on Nacos data synchronization source code analysis.

This paper based on shenyu-2.4.0 version of the source code analysis, the official website of the introduction of please refer to the Data Synchronization Design .

1. About Nacos#

Nacos can be used for dynamic service discovery and configuration and service management. Shenyu use Nacos as an option to sync data.

2. Admin Data Sync#

We traced the source code from a real case, such as updating a selector data in the Divide plugin to a weight of 90 in a background administration system:

2.1 Accept Data#

  • SelectorController.createSelector()

Enter the createSelector() method of the SelectorController class, which validates data, adds or updates data, and returns results.

@Validated@RequiredArgsConstructor@RestController@RequestMapping("/selector")public class SelectorController {        @PutMapping("/{id}")    public ShenyuAdminResult updateSelector(@PathVariable("id") final String id, @Valid @RequestBody final SelectorDTO selectorDTO) {        // set the current selector data ID        selectorDTO.setId(id);        // create or update operation        Integer updateCount = selectorService.createOrUpdate(selectorDTO);        // return result         return ShenyuAdminResult.success(ShenyuResultMessage.UPDATE_SUCCESS, updateCount);    }        // ......}

2.2 Handle Data#

  • SelectorServiceImpl.createOrUpdate()

Convert data in the SelectorServiceImpl class using the createOrUpdate() method, save it to the database, publish the event, update upstream.

@RequiredArgsConstructor@Servicepublic class SelectorServiceImpl implements SelectorService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;        @Override    @Transactional(rollbackFor = Exception.class)    public int createOrUpdate(final SelectorDTO selectorDTO) {        int selectorCount;        // build data DTO --> DO        SelectorDO selectorDO = SelectorDO.buildSelectorDO(selectorDTO);        List<SelectorConditionDTO> selectorConditionDTOs = selectorDTO.getSelectorConditions();        // insert or update ?        if (StringUtils.isEmpty(selectorDTO.getId())) {            //  insert into data            selectorCount = selectorMapper.insertSelective(selectorDO);            // insert into condition data            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                selectorConditionMapper.insertSelective(SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO));            });            // check selector add            if (dataPermissionMapper.listByUserId(JwtUtils.getUserInfo().getUserId()).size() > 0) {                DataPermissionDTO dataPermissionDTO = new DataPermissionDTO();                dataPermissionDTO.setUserId(JwtUtils.getUserInfo().getUserId());                dataPermissionDTO.setDataId(selectorDO.getId());                dataPermissionDTO.setDataType(AdminConstants.SELECTOR_DATA_TYPE);                dataPermissionMapper.insertSelective(DataPermissionDO.buildPermissionDO(dataPermissionDTO));            }
        } else {            // update data, delete and then insert            selectorCount = selectorMapper.updateSelective(selectorDO);            //delete rule condition then add            selectorConditionMapper.deleteByQuery(new SelectorConditionQuery(selectorDO.getId()));            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                SelectorConditionDO selectorConditionDO = SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO);                selectorConditionMapper.insertSelective(selectorConditionDO);            });        }        // publish event        publishEvent(selectorDO, selectorConditionDTOs);
        // update upstream        updateDivideUpstream(selectorDO);        return selectorCount;    }        // ......    }

In the Service class to persist data, i.e. to the database, this should be familiar, not expand. The update upstream operation is analyzed in the corresponding section below, focusing on the publish event operation, which performs data synchronization.

The logic of the publishEvent() method is to find the plugin corresponding to the selector, build the conditional data, and publish the change data.

       private void publishEvent(final SelectorDO selectorDO, final List<SelectorConditionDTO> selectorConditionDTOs) {        // find plugin of selector        PluginDO pluginDO = pluginMapper.selectById(selectorDO.getPluginId());        // build condition data        List<ConditionData> conditionDataList =                selectorConditionDTOs.stream().map(ConditionTransfer.INSTANCE::mapToSelectorDTO).collect(Collectors.toList());        // publish event        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, DataEventTypeEnum.UPDATE,                Collections.singletonList(SelectorDO.transFrom(selectorDO, pluginDO.getName(), conditionDataList))));    }

Change data released by eventPublisher.PublishEvent() is complete, the eventPublisher object is a ApplicationEventPublisher class, The fully qualified class name is org.springframework.context.ApplicationEventPublisher. Here we see that publishing data is done through Spring related functionality.

ApplicationEventPublisher

When a state change, the publisher calls ApplicationEventPublisher of publishEvent method to release an event, Spring container broadcast event for all observers, The observer's onApplicationEvent method is called to pass the event object to the observer. There are two ways to call publishEvent method, one is to implement the interface by the container injection ApplicationEventPublisher object and then call the method, the other is a direct call container, the method of two methods of publishing events not too big difference.

  • ApplicationEventPublisher: publish event;
  • ApplicationEvent: Spring event, record the event source, time, and data;
  • ApplicationListener: event listener, observer.

In Spring event publishing mechanism, there are three objects,

An object is a publish event ApplicationEventPublisher, in ShenYu through the constructor in the injected a eventPublisher.

The other object is ApplicationEvent , inherited from ShenYu through DataChangedEvent, representing the event object.

public class DataChangedEvent extends ApplicationEvent {//......}

The last object is ApplicationListener in ShenYu in through DataChangedEventDispatcher class implements this interface, as the event listener, responsible for handling the event object.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
    //......    }

2.3 Dispatch Data#

  • DataChangedEventDispatcher.onApplicationEvent()

Released when the event is completed, will automatically enter the DataChangedEventDispatcher class onApplicationEvent() method of handling events.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
  /**     * This method is called when there are data changes   * @param event     */    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)      for (DataChangedListener listener : listeners) {            // What kind of data has changed        switch (event.getGroupKey()) {                case APP_AUTH: // app auth data                    listener.onAppAuthChanged((List<AppAuthData>) event.getSource(), event.getEventType());                    break;                case PLUGIN:  // plugin data                    listener.onPluginChanged((List<PluginData>) event.getSource(), event.getEventType());                    break;                case RULE:    // rule data                    listener.onRuleChanged((List<RuleData>) event.getSource(), event.getEventType());                    break;                case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                    break;                case META_DATA:  // metadata                    listener.onMetaDataChanged((List<MetaData>) event.getSource(), event.getEventType());                    break;                default:  // other types throw exception                  throw new IllegalStateException("Unexpected value: " + event.getGroupKey());            }        }    }    }

When there is a data change, the onApplicationEvent method is called and all the data change listeners are iterated to determine the data type and handed over to the appropriate data listener for processing.

ShenYu groups all the data into five categories: APP_AUTH, PLUGIN, RULE, SELECTOR and META_DATA.

Here the data change listener (DataChangedListener) is an abstraction of the data synchronization policy. Its concrete implementation is:

These implementation classes are the synchronization strategies currently supported by ShenYu:

  • WebsocketDataChangedListener: data synchronization based on Websocket;
  • ZookeeperDataChangedListener:data synchronization based on Zookeeper;
  • ConsulDataChangedListener: data synchronization based on Consul;
  • EtcdDataDataChangedListener:data synchronization based on etcd;
  • HttpLongPollingDataChangedListener:data synchronization based on http long polling;
  • NacosDataChangedListener:data synchronization based on nacos;

Given that there are so many implementation strategies, how do you decide which to use?

Because this paper is based on nacos data synchronization source code analysis, so here to NacosDataChangedListener as an example, the analysis of how it is loaded and implemented.

A global search in the source code project shows that its implementation is done in the DataSyncConfiguration class.

/** * The type Data sync configuration. */@Configurationpublic class DataSyncConfiguration {    // some codes omitted here      /**     * The type Nacos listener.     */    @Configuration    @ConditionalOnProperty(prefix = "shenyu.sync.nacos", name = "url")    @Import(NacosConfiguration.class)    static class NacosListener {
        /**         * Data changed listener data changed listener.         *         * @param configService the config service         * @return the data changed listener         */        @Bean        @ConditionalOnMissingBean(NacosDataChangedListener.class)        public DataChangedListener nacosDataChangedListener(final ConfigService configService) {            return new NacosDataChangedListener(configService);        }
        /**         * Nacos data init zookeeper data init.         *         * @param configService the config service         * @param syncDataService the sync data service         * @return the nacos data init         */        @Bean        @ConditionalOnMissingBean(NacosDataInit.class)        public NacosDataInit nacosDataInit(final ConfigService configService, final SyncDataService syncDataService) {            return new NacosDataInit(configService, syncDataService);        }    }      // some codes omitted here}

This configuration class is implemented through the SpringBoot conditional assembly class. The NacosListener class has several annotations:

  • @Configuration: Configuration file, application context;

  • @ConditionalOnProperty(prefix = "shenyu.sync.nacos", name = "url"): attribute condition. The configuration class takes effect only when the condition is met. That is, when we have the following configuration, nacos is used for data synchronization.

    shenyu:    sync:     nacos:          url: localhost:8848
  • @Import(NacosConfiguration.class):import a configration class NacosConfiguration, which provides a method ConfigService nacosConfigService(final NacosProperties nacosProp) to convert the nacos properties to a bean with the ConfigService type. We would take a look at how to generate the bean and then analyze the property configuration class and the property configuration file.

/** * Nacos configuration. */@EnableConfigurationProperties(NacosProperties.class)public class NacosConfiguration {
    /**     * register configService in spring ioc.     *     * @param nacosProp the nacos configuration     * @return ConfigService {@linkplain ConfigService}     * @throws Exception the exception     */    @Bean    @ConditionalOnMissingBean(ConfigService.class)    public ConfigService nacosConfigService(final NacosProperties nacosProp) throws Exception {        Properties properties = new Properties();        if (nacosProp.getAcm() != null && nacosProp.getAcm().isEnabled()) {            // Use aliyun ACM service            properties.put(PropertyKeyConst.ENDPOINT, nacosProp.getAcm().getEndpoint());            properties.put(PropertyKeyConst.NAMESPACE, nacosProp.getAcm().getNamespace());            // Use subaccount ACM administrative authority            properties.put(PropertyKeyConst.ACCESS_KEY, nacosProp.getAcm().getAccessKey());            properties.put(PropertyKeyConst.SECRET_KEY, nacosProp.getAcm().getSecretKey());        } else {            properties.put(PropertyKeyConst.SERVER_ADDR, nacosProp.getUrl());            if (StringUtils.isNotBlank(nacosProp.getNamespace())) {                properties.put(PropertyKeyConst.NAMESPACE, nacosProp.getNamespace());            }            if (StringUtils.isNotBlank(nacosProp.getUsername())) {                properties.put(PropertyKeyConst.USERNAME, nacosProp.getUsername());            }            if (StringUtils.isNotBlank(nacosProp.getPassword())) {                properties.put(PropertyKeyConst.PASSWORD, nacosProp.getPassword());            }        }        return NacosFactory.createConfigService(properties);    }}

There are two steps in this method. Firstly, Properties object is generated and populated with the specified nacos path value and authority values on whether the alyun ACM service is used. Secondly, the nacos factory class would use its static factory method to create a configService object via reflect methods and then populate the object with the Properties object generated in the first step.

Now, let's analyze the NacosProperties class and its counterpart property file.

/** * The type Nacos config. */@ConfigurationProperties(prefix = "shenyu.sync.nacos")public class NacosProperties {
    private String url;
    private String namespace;
    private String username;
    private String password;
    private NacosACMProperties acm;
    /**     * Gets the value of url.     *     * @return the value of url     */    public String getUrl() {        return url;    }
    /**     * Sets the url.     *     * @param url url     */    public void setUrl(final String url) {        this.url = url;    }
    /**     * Gets the value of namespace.     *     * @return the value of namespace     */    public String getNamespace() {        return namespace;    }
    /**     * Sets the namespace.     *     * @param namespace namespace     */    public void setNamespace(final String namespace) {        this.namespace = namespace;    }
    /**     * Gets the value of username.     *     * @return the value of username     */    public String getUsername() {        return username;    }
    /**     * Sets the username.     *     * @param username username     */    public void setUsername(final String username) {        this.username = username;    }
    /**     * Gets the value of password.     *     * @return the value of password     */    public String getPassword() {        return password;    }
    /**     * Sets the password.     *     * @param password password     */    public void setPassword(final String password) {        this.password = password;    }
    /**     * Gets the value of acm.     *     * @return the value of acm     */    public NacosACMProperties getAcm() {        return acm;    }
    /**     * Sets the acm.     *     * @param acm acm     */    public void setAcm(final NacosACMProperties acm) {        this.acm = acm;    }
    public static class NacosACMProperties {
        private boolean enabled;
        private String endpoint;
        private String namespace;
        private String accessKey;
        private String secretKey;
        /**         * Gets the value of enabled.         *         * @return the value of enabled         */        public boolean isEnabled() {            return enabled;        }
        /**         * Sets the enabled.         *         * @param enabled enabled         */        public void setEnabled(final boolean enabled) {            this.enabled = enabled;        }
        /**         * Gets the value of endpoint.         *         * @return the value of endpoint         */        public String getEndpoint() {            return endpoint;        }
        /**         * Sets the endpoint.         *         * @param endpoint endpoint         */        public void setEndpoint(final String endpoint) {            this.endpoint = endpoint;        }
        /**         * Gets the value of namespace.         *         * @return the value of namespace         */        public String getNamespace() {            return namespace;        }
        /**         * Sets the namespace.         *         * @param namespace namespace         */        public void setNamespace(final String namespace) {            this.namespace = namespace;        }
        /**         * Gets the value of accessKey.         *         * @return the value of accessKey         */        public String getAccessKey() {            return accessKey;        }
        /**         * Sets the accessKey.         *         * @param accessKey accessKey         */        public void setAccessKey(final String accessKey) {            this.accessKey = accessKey;        }
        /**         * Gets the value of secretKey.         *         * @return the value of secretKey         */        public String getSecretKey() {            return secretKey;        }
        /**         * Sets the secretKey.         *         * @param secretKey secretKey         */        public void setSecretKey(final String secretKey) {            this.secretKey = secretKey;        }    }
}

When the property shenyu.sync.nacos.url is set in the property file, the shenyu admin would choose the nacos to sync data. At this time, the configuration class NacosListener would take effect and a bean with the type NacosDataChangedListener and another bean with the type NacosDataInit would both be generated.

  • nacosDataChangedListener, the bean with the type NacosDataChangedListener , takes the bean with the type ConfigService as a member variable. ConfigService is an api provided by nacos and can be used to send request to nacos server to modify configurations once the nacosDataChangedListener has accepted an event and trigger the callback method.

  • nacosDataInit, the bean with the type NacosDataInit, takes the bean configService and the bean syncDataService as memeber variables. It use configService to call the Nacos api to judge whether the configurations have been initialized, and would use syncDataService to refresh them if the answer is no.

    As mentioned above, some operations of the listener would be triggered in the event handle method onApplicationEvent(). In this example, we update selector data and choose nacos to sync data, so the code about logic of the selector data changes in the NacosDataChangedListener class would be called.

    //DataChangedEventDispatcher.java    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {          // Iterate through the data change listener (usually using a data synchronization approach is fine)        for (DataChangedListener listener : listeners) {          // What kind of data has changed          switch (event.getGroupKey()) {                 // some codes omitted                  case SELECTOR:   // selector data                      listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                      break;              }          }      }

2.4 Nacos Data Changed Listener#

  • NacosDataChangedListener.onSelectorChanged()

In the onSelectorChanged() method, determine the type of action, whether to refresh synchronization or update or create synchronization. Determine whether the node is in etcd based on the current selector data.

/** * Use nacos to push data changes. */public class NacosDataChangedListener implements DataChangedListener {    @Override    public void onSelectorChanged(final List<SelectorData> changed, final DataEventTypeEnum eventType) {        updateSelectorMap(getConfig(NacosPathConstants.SELECTOR_DATA_ID));        switch (eventType) {            case DELETE:                changed.forEach(selector -> {                    List<SelectorData> ls = SELECTOR_MAP                            .getOrDefault(selector.getPluginName(), new ArrayList<>())                            .stream()                            .filter(s -> !s.getId().equals(selector.getId()))                            .sorted(SELECTOR_DATA_COMPARATOR)                            .collect(Collectors.toList());                    SELECTOR_MAP.put(selector.getPluginName(), ls);                });                break;            case REFRESH:            case MYSELF:                SELECTOR_MAP.keySet().removeAll(SELECTOR_MAP.keySet());                changed.forEach(selector -> {                    List<SelectorData> ls = SELECTOR_MAP                            .getOrDefault(selector.getPluginName(), new ArrayList<>())                            .stream()                            .sorted(SELECTOR_DATA_COMPARATOR)                            .collect(Collectors.toList());                    ls.add(selector);                    SELECTOR_MAP.put(selector.getPluginName(), ls);                });                break;            default:                changed.forEach(selector -> {                    List<SelectorData> ls = SELECTOR_MAP                            .getOrDefault(selector.getPluginName(), new ArrayList<>())                            .stream()                            .filter(s -> !s.getId().equals(selector.getId()))                            .sorted(SELECTOR_DATA_COMPARATOR)                            .collect(Collectors.toList());                    ls.add(selector);                    SELECTOR_MAP.put(selector.getPluginName(), ls);                });                break;        }        publishConfig(NacosPathConstants.SELECTOR_DATA_ID, SELECTOR_MAP);    }  }

This is the core part. The variable changed represents the list , which needs to be updated, with the elements of the SelectorData type. The variable eventType represents the event type. The variable SELECTOR_MAP is with the type ConcurrentMap<String, List<SelectorData>>, so the key of the map is with the String type and the value is the selector list of this plugin. The value of the constant NacosPathConstants.SELECTOR_DATA_ID is shenyu.selector.json. The steps are as follows, firstly, use the method getConfig to call the api of Nacos to fetch the config with the group value of shenyu.selector.json from Nacos and call the updateSelectorMap method to use the config fetched above to update the SELECTOR_MAP so that the we refresh the selector config from Nacos. Secondly, we can update SELECTOR_MAP according to the event type and then use the publishConfig method to call the Nacos api to update all the config with the group value of shenyu.selector.json.

As long as the changed data is correctly written to the Nacos node, the admin side of the operation is complete.

In our current case, updating one of the selector data in the Divide plugin with a weight of 90 updates specific nodes in the graph.

We series the above update flow with a sequence diagram.

3. Gateway Data Sync#

Assume that the ShenYu gateway is already running properly, and the data synchronization mode is also nacos. How does the gateway receive and process the selector data after updating it on the admin side and sending the changed data to nacos? Let's continue our source code analysis to find out.

3.1 NacosSyncDataService Accept Data#

The gateway side use NacosSyncDataService to watch nacos and fetch the data update, but before we dive into this part, let us take a look on how the bean with the type NacosSyncDataService is generated. The answer is it's defined in the Spring config class NacosSyncDataConfiguration. Let's focus on the annotation @ConditionalOnProperty(prefix = "shenyu.sync.nacos", name = "url") on the class NacosSyncDataConfiguration again. We have met this annotation when we analyzed the NacosListener class on the Admin side before, this config class would take effect only and if only the condition on this annotation is matched. In other words, when we have the config as below on the gateway side, the gateway would use nacos to sync data and the config class NacosSyncDataConfiguration would take effect.

shenyu:    sync:     nacos:          url: localhost:8848
/** * Nacos sync data configuration for spring boot. */@Configuration@ConditionalOnClass(NacosSyncDataService.class)@ConditionalOnProperty(prefix = "shenyu.sync.nacos", name = "url")public class NacosSyncDataConfiguration {
    private static final Logger LOGGER = LoggerFactory.getLogger(NacosSyncDataConfiguration.class);
    /**     * Nacos sync data service.     *     * @param configService     the config service     * @param pluginSubscriber the plugin subscriber     * @param metaSubscribers   the meta subscribers     * @param authSubscribers   the auth subscribers     * @return the sync data service     */    @Bean    public SyncDataService nacosSyncDataService(final ObjectProvider<ConfigService> configService, final ObjectProvider<PluginDataSubscriber> pluginSubscriber,                                           final ObjectProvider<List<MetaDataSubscriber>> metaSubscribers, final ObjectProvider<List<AuthDataSubscriber>> authSubscribers) {        LOGGER.info("you use nacos sync shenyu data.......");        return new NacosSyncDataService(configService.getIfAvailable(), pluginSubscriber.getIfAvailable(),                metaSubscribers.getIfAvailable(Collections::emptyList), authSubscribers.getIfAvailable(Collections::emptyList));    }
    /**     * Nacos config service config service.     *     * @param nacosConfig the nacos config     * @return the config service     * @throws Exception the exception     */    @Bean    public ConfigService nacosConfigService(final NacosConfig nacosConfig) throws Exception {        Properties properties = new Properties();        if (nacosConfig.getAcm() != null && nacosConfig.getAcm().isEnabled()) {            properties.put(PropertyKeyConst.ENDPOINT, nacosConfig.getAcm().getEndpoint());            properties.put(PropertyKeyConst.NAMESPACE, nacosConfig.getAcm().getNamespace());            properties.put(PropertyKeyConst.ACCESS_KEY, nacosConfig.getAcm().getAccessKey());            properties.put(PropertyKeyConst.SECRET_KEY, nacosConfig.getAcm().getSecretKey());        } else {            properties.put(PropertyKeyConst.SERVER_ADDR, nacosConfig.getUrl());            if (StringUtils.isNotBlank(nacosConfig.getNamespace())) {                properties.put(PropertyKeyConst.NAMESPACE, nacosConfig.getNamespace());            }            if (nacosConfig.getUsername() != null) {                properties.put(PropertyKeyConst.USERNAME, nacosConfig.getUsername());            }            if (nacosConfig.getPassword() != null) {                properties.put(PropertyKeyConst.PASSWORD, nacosConfig.getPassword());            }        }        return NacosFactory.createConfigService(properties);    }
    /**     * Http config http config.     *     * @return the http config     */    @Bean    @ConfigurationProperties(prefix = "shenyu.sync.nacos")    public NacosConfig nacosConfig() {        return new NacosConfig();    }}

Let's focus on the part of code above which is about the generation of the bean nacosSyncDataService:

@Beanpublic SyncDataService nacosSyncDataService(final ObjectProvider<ConfigService> configService, final ObjectProvider<PluginDataSubscriber> pluginSubscriber,                                           final ObjectProvider<List<MetaDataSubscriber>> metaSubscribers, final ObjectProvider<List<AuthDataSubscriber>> authSubscribers) {        LOGGER.info("you use nacos sync shenyu data.......");        return new NacosSyncDataService(configService.getIfAvailable(), pluginSubscriber.getIfAvailable(),                metaSubscribers.getIfAvailable(Collections::emptyList), authSubscribers.getIfAvailable(Collections::emptyList));}

As we can see, the bean is generated by the construction method of the Class NacosSyncDataService. Let's dive into the construction method.

public NacosSyncDataService(final ConfigService configService, final PluginDataSubscriber pluginDataSubscriber,                                final List<MetaDataSubscriber> metaDataSubscribers, final List<AuthDataSubscriber> authDataSubscribers) {
        super(configService, pluginDataSubscriber, metaDataSubscribers, authDataSubscribers);        start();}
    public void start() {        watcherData(NacosPathConstants.PLUGIN_DATA_ID, this::updatePluginMap);        watcherData(NacosPathConstants.SELECTOR_DATA_ID, this::updateSelectorMap);        watcherData(NacosPathConstants.RULE_DATA_ID, this::updateRuleMap);        watcherData(NacosPathConstants.META_DATA_ID, this::updateMetaDataMap);        watcherData(NacosPathConstants.AUTH_DATA_ID, this::updateAuthMap);    }
    protected void watcherData(final String dataId, final OnChange oc) {        Listener listener = new Listener() {            @Override            public void receiveConfigInfo(final String configInfo) {                oc.change(configInfo);            }
            @Override            public Executor getExecutor() {                return null;            }        };        oc.change(getConfigAndSignListener(dataId, listener));        LISTENERS.computeIfAbsent(dataId, key -> new ArrayList<>()).add(listener);    }

As we can see, the construction method calls the start method and calls the watcherData method to create a listener which relates itself to a callback method oc, since we're analyzing the changes on the component with the selector type, the relative callback method is updateSelectorMap. This callback method is used to handle data.

3.2 Handle Data#

  • NacosCacheHandler.updateSelectorMap()

The data is not null, and caching the selector data is again handled by PluginDataSubscriber.

    protected void updateSelectorMap(final String configInfo) {        try {            List<SelectorData> selectorDataList = GsonUtils.getInstance().toObjectMapList(configInfo, SelectorData.class).values().stream().flatMap(Collection::stream).collect(Collectors.toList());            selectorDataList.forEach(selectorData -> Optional.ofNullable(pluginDataSubscriber).ifPresent(subscriber -> {                subscriber.unSelectorSubscribe(selectorData);                subscriber.onSelectorSubscribe(selectorData);            }));        } catch (JsonParseException e) {            LOG.error("sync selector data have error:", e);        }    }

PluginDataSubscriber is an interface, it is only a CommonPluginDataSubscriber implementation class, responsible for data processing plugin, selector and rules.

3.3 Common Plugin Data Subscriber#

  • PluginDataSubscriber.unSelectorSubscribe()
  • PluginDataSubscriber.onSelectorSubscribe()

It has no additional logic and calls the unSelectorSubscribe()andsubscribeDataHandler() method directly. Within methods, there are data types (plugins, selectors, or rules) and action types (update or delete) to perform different logic.

/** * The common plugin data subscriber, responsible for handling all plug-in, selector, and rule information */public class CommonPluginDataSubscriber implements PluginDataSubscriber {    //......     // handle selector data    @Override    public void onSelectorSubscribe(final SelectoData selectorData) {        subscribeDataHandler(selectorData, DataEventTypeEnum.UPDATE);    }         @Override    public void unSelectorSubscribe(final SelectorData selectorData) {        subscribeDataHandler(selectorData, DataEventTypeEnum.DELETE);    }         // A subscription data handler that handles updates or deletions of data    private <T> void subscribeDataHandler(final T classData, final DataEventTypeEnum dataType) {        Optional.ofNullable(classData).ifPresent(data -> {            // plugin data            if (data instanceof PluginData) {                PluginData pluginData = (PluginData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                     BaseDataCache.getInstance().cachePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.handlerPlugin(pluginData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.removePlugin(pluginData));                }            } else if (data instanceof SelectorData) {  // selector data                SelectorData selectorData = (SelectorData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                     Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.removeSelector(selectorData));                }            } else if (data instanceof RuleData) {  // rule data                RuleData ruleData = (RuleData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.handlerRule(ruleData));                } else if (dataType == DataEventTypeEnum.DELETE) { // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.removeRule(ruleData));                }            }        });    }    }

3.4 Data cached to Memory#

Adding a selector will enter the following logic:

// save the data to gateway memoryBaseDataCache.getInstance().cacheSelectData(selectorData);// If each plugin has its own processing logic, then do itOptional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));

One is to save the data to the gateway's memory. BaseDataCache is the class that ultimately caches data, implemented in a singleton pattern. The selector data is stored in the SELECTOR_MAP Map. In the subsequent use, also from this data.

public final class BaseDataCache {    // private instance    private static final BaseDataCache INSTANCE = new BaseDataCache();    // private constructor    private BaseDataCache() {    }        /**     * Gets instance.     *  public method     * @return the instance     */    public static BaseDataCache getInstance() {        return INSTANCE;    }        /**      * A Map of the cache selector data     * pluginName -> SelectorData.     */    private static final ConcurrentMap<String, List<SelectorData>> SELECTOR_MAP = Maps.newConcurrentMap();        public void cacheSelectData(final SelectorData selectorData) {        Optional.ofNullable(selectorData).ifPresent(this::selectorAccept);    }           /**     * cache selector data.     * @param data the selector data     */    private void selectorAccept(final SelectorData data) {        String key = data.getPluginName();        if (SELECTOR_MAP.containsKey(key)) { // Update operation, delete before insert            List<SelectorData> existList = SELECTOR_MAP.get(key);            final List<SelectorData> resultList = existList.stream().filter(r -> !r.getId().equals(data.getId())).collect(Collectors.toList());            resultList.add(data);            final List<SelectorData> collect = resultList.stream().sorted(Comparator.comparing(SelectorData::getSort)).collect(Collectors.toList());            SELECTOR_MAP.put(key, collect);        } else {  // Add new operations directly to Map            SELECTOR_MAP.put(key, Lists.newArrayList(data));        }    }    }

Second, if each plugin has its own processing logic, then do it. Through the IDEA editor, you can see that after adding a selector, there are the following plugins and processing. We're not going to expand it here.

After the above source tracking, and through a practical case, in the admin end to update a selector data, the ZooKeeper data synchronization process analysis is clear.

Let's series the data synchronization process on the gateway side through the sequence diagram:

The data synchronization process has been analyzed. In order to prevent the synchronization process from being interrupted, other logic is ignored during the analysis. We have analyzed the process of gateway synchronization operation initialization in the start method of NacosSyncDataService class. We also need to analyze the process of Admin synchronization data initialization.

4. Admin Data Sync initialization#

On the admin side, the bean with the type NacosDataInit, is defined and generated in the NacosListener, if the configuration of the admin side decides to use nacos to sync data, when admin starts, the current data will be fully synchronized to nacos, the implementation logic is as follows:


/** * The type Nacos data init. */public class NacosDataInit implements CommandLineRunner {
    private static final Logger LOG = LoggerFactory.getLogger(NacosDataInit.class);
    private final ConfigService configService;
    private final SyncDataService syncDataService;
    /**     * Instantiates a new Nacos data init.     * @param configService the nacos config service     * @param syncDataService the sync data service     */    public NacosDataInit(final ConfigService configService, final SyncDataService syncDataService) {        this.configService = configService;        this.syncDataService = syncDataService;    }
    @Override    public void run(final String... args) {        String pluginDataId = NacosPathConstants.PLUGIN_DATA_ID;        String authDataId = NacosPathConstants.AUTH_DATA_ID;        String metaDataId = NacosPathConstants.META_DATA_ID;        if (dataIdNotExist(pluginDataId) && dataIdNotExist(authDataId) && dataIdNotExist(metaDataId)) {            syncDataService.syncAll(DataEventTypeEnum.REFRESH);        }    }
    private boolean dataIdNotExist(final String pluginDataId) {        try {            String group = NacosPathConstants.GROUP;            long timeout = NacosPathConstants.DEFAULT_TIME_OUT;            return configService.getConfig(pluginDataId, group, timeout) == null;        } catch (NacosException e) {            LOG.error("Get data from nacos error.", e);            throw new ShenyuException(e.getMessage());        }    }}

Check whether there is data in nacos, if not, then synchronize.

NacosDataInit implements the CommandLineRunner interface. It is an interface provided by SpringBoot that executes the run() method after all Spring Beans initializations and is often used for initialization operations in a project.

  • SyncDataService.syncAll()

Query data from the database, and then perform full data synchronization, all authentication information, plugin information, selector information, rule information, and metadata information. Synchronous events are published primarily through eventPublisher. After publishing the event via publishEvent(), the ApplicationListener performs the event change operation. In ShenYu is mentioned in DataChangedEventDispatcher.

@Servicepublic class SyncDataServiceImpl implements SyncDataService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;         /***     * sync all data     * @param type the type     * @return     */    @Override    public boolean syncAll(final DataEventTypeEnum type) {        // app auth data        appAuthService.syncData();        // plugin data        List<PluginData> pluginDataList = pluginService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.PLUGIN, type, pluginDataList));        // selector data        List<SelectorData> selectorDataList = selectorService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, type, selectorDataList));        // rule data        List<RuleData> ruleDataList = ruleService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.RULE, type, ruleDataList));        // metadata        metaDataService.syncData();        return true;    }    }

5. Summary#

This paper through a practical case, nacos data synchronization principle source code analysis. The main knowledge points involved are as follows:

  • Data synchronization based on nacos is mainly implemented through watch mechanism;

  • Complete event publishing and listening via Spring;

  • Support multiple synchronization strategies through abstract DataChangedListener interface, interface oriented programming;

  • Use singleton design pattern to cache data class BaseDataCache;

  • Loading of configuration classes via conditional assembly of SpringBoot and starter loading mechanism.

ZooKeeper Data Synchronization Source Code Analysis

· 18 min read
Apache ShenYu Committer

Apache ShenYu is an asynchronous, high-performance, cross-language, responsive API gateway.

In ShenYu gateway, data synchronization refers to how to synchronize the updated data to the gateway after the data is sent in the background management system. The Apache ShenYu gateway currently supports data synchronization for ZooKeeper, WebSocket, http long poll, Nacos, etcd and Consul. The main content of this article is based on WebSocket data synchronization source code analysis.

This paper based on shenyu-2.4.0 version of the source code analysis, the official website of the introduction of please refer to the Data Synchronization Design .

1. About ZooKeeper#

Apache ZooKeeper is a software project of the Apache Software Foundation that provides open source distributed configuration services, synchronization services, and naming registries for large-scale distributed computing. ZooKeeper nodes store their data in a hierarchical namespace, much like a file system or a prefix tree structure. Clients can read and write on nodes and thus have a shared configuration service in this way.

2. Admin Data Sync#

We traced the source code from a real case, such as updating a selector data in the Divide plugin to a weight of 90 in a background administration system:

2.1 Accept Data#

  • SelectorController.createSelector()

Enter the createSelector() method of the SelectorController class, which validates data, adds or updates data, and returns results.

@Validated@RequiredArgsConstructor@RestController@RequestMapping("/selector")public class SelectorController {        @PutMapping("/{id}")    public ShenyuAdminResult updateSelector(@PathVariable("id") final String id, @Valid @RequestBody final SelectorDTO selectorDTO) {        // set the current selector data ID        selectorDTO.setId(id);        // create or update operation        Integer updateCount = selectorService.createOrUpdate(selectorDTO);        // return result         return ShenyuAdminResult.success(ShenyuResultMessage.UPDATE_SUCCESS, updateCount);    }        // ......}

2.2 Handle Data#

  • SelectorServiceImpl.createOrUpdate()

Convert data in the SelectorServiceImpl class using the createOrUpdate() method, save it to the database, publish the event, update upstream.

@RequiredArgsConstructor@Servicepublic class SelectorServiceImpl implements SelectorService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;        @Override    @Transactional(rollbackFor = Exception.class)    public int createOrUpdate(final SelectorDTO selectorDTO) {        int selectorCount;        // build data DTO --> DO        SelectorDO selectorDO = SelectorDO.buildSelectorDO(selectorDTO);        List<SelectorConditionDTO> selectorConditionDTOs = selectorDTO.getSelectorConditions();        // insert or update ?        if (StringUtils.isEmpty(selectorDTO.getId())) {            //  insert into data            selectorCount = selectorMapper.insertSelective(selectorDO);            // insert into condition data            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                selectorConditionMapper.insertSelective(SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO));            });            // check selector add            if (dataPermissionMapper.listByUserId(JwtUtils.getUserInfo().getUserId()).size() > 0) {                DataPermissionDTO dataPermissionDTO = new DataPermissionDTO();                dataPermissionDTO.setUserId(JwtUtils.getUserInfo().getUserId());                dataPermissionDTO.setDataId(selectorDO.getId());                dataPermissionDTO.setDataType(AdminConstants.SELECTOR_DATA_TYPE);                dataPermissionMapper.insertSelective(DataPermissionDO.buildPermissionDO(dataPermissionDTO));            }
        } else {            // update data, delete and then insert            selectorCount = selectorMapper.updateSelective(selectorDO);            //delete rule condition then add            selectorConditionMapper.deleteByQuery(new SelectorConditionQuery(selectorDO.getId()));            selectorConditionDTOs.forEach(selectorConditionDTO -> {                selectorConditionDTO.setSelectorId(selectorDO.getId());                SelectorConditionDO selectorConditionDO = SelectorConditionDO.buildSelectorConditionDO(selectorConditionDTO);                selectorConditionMapper.insertSelective(selectorConditionDO);            });        }        // publish event        publishEvent(selectorDO, selectorConditionDTOs);
        // update upstream        updateDivideUpstream(selectorDO);        return selectorCount;    }        // ......    }

In the Service class to persist data, i.e. to the database, this should be familiar, not expand. The update upstream operation is analyzed in the corresponding section below, focusing on the publish event operation, which performs data synchronization.

The logic of the publishEvent() method is to find the plugin corresponding to the selector, build the conditional data, and publish the change data.

       private void publishEvent(final SelectorDO selectorDO, final List<SelectorConditionDTO> selectorConditionDTOs) {        // find plugin of selector        PluginDO pluginDO = pluginMapper.selectById(selectorDO.getPluginId());        // build condition data        List<ConditionData> conditionDataList =                selectorConditionDTOs.stream().map(ConditionTransfer.INSTANCE::mapToSelectorDTO).collect(Collectors.toList());        // publish event        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, DataEventTypeEnum.UPDATE,                Collections.singletonList(SelectorDO.transFrom(selectorDO, pluginDO.getName(), conditionDataList))));    }

Change data released by eventPublisher.PublishEvent() is complete, the eventPublisher object is a ApplicationEventPublisher class, The fully qualified class name is org.springframework.context.ApplicationEventPublisher. Here we see that publishing data is done through Spring related functionality.

ApplicationEventPublisher

When a state change, the publisher calls ApplicationEventPublisher of publishEvent method to release an event, Spring container broadcast event for all observers, The observer's onApplicationEvent method is called to pass the event object to the observer. There are two ways to call publishEvent method, one is to implement the interface by the container injection ApplicationEventPublisher object and then call the method, the other is a direct call container, the method of two methods of publishing events not too big difference.

  • ApplicationEventPublisher: publish event;
  • ApplicationEvent: Spring event, record the event source, time, and data;
  • ApplicationListener: event listener, observer.

In Spring event publishing mechanism, there are three objects,

An object is a publish event ApplicationEventPublisher, in ShenYu through the constructor in the injected a eventPublisher.

The other object is ApplicationEvent , inherited from ShenYu through DataChangedEvent, representing the event object.

public class DataChangedEvent extends ApplicationEvent {//......}

The last object is ApplicationListener in ShenYu in through DataChangedEventDispatcher class implements this interface, as the event listener, responsible for handling the event object.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
    //......    }

2.3 Dispatch Data#

  • DataChangedEventDispatcher.onApplicationEvent()

Released when the event is completed, will automatically enter the DataChangedEventDispatcher class onApplicationEvent() method of handling events.

@Componentpublic class DataChangedEventDispatcher implements ApplicationListener<DataChangedEvent>, InitializingBean {
  /**     * This method is called when there are data changes   * @param event     */    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)      for (DataChangedListener listener : listeners) {            // What kind of data has changed        switch (event.getGroupKey()) {                case APP_AUTH: // app auth data                    listener.onAppAuthChanged((List<AppAuthData>) event.getSource(), event.getEventType());                    break;                case PLUGIN:  // plugin data                    listener.onPluginChanged((List<PluginData>) event.getSource(), event.getEventType());                    break;                case RULE:    // rule data                    listener.onRuleChanged((List<RuleData>) event.getSource(), event.getEventType());                    break;                case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());                    break;                case META_DATA:  // metadata                    listener.onMetaDataChanged((List<MetaData>) event.getSource(), event.getEventType());                    break;                default:  // other types throw exception                  throw new IllegalStateException("Unexpected value: " + event.getGroupKey());            }        }    }    }

When there is a data change, the onApplicationEvent method is called and all the data change listeners are iterated to determine the data type and handed over to the appropriate data listener for processing.

ShenYu groups all the data into five categories: APP_AUTH, PLUGIN, RULE, SELECTOR and META_DATA.

Here the data change listener (DataChangedListener) is an abstraction of the data synchronization policy. Its concrete implementation is:

These implementation classes are the synchronization strategies currently supported by ShenYu:

  • WebsocketDataChangedListener: data synchronization based on Websocket;
  • ZookeeperDataChangedListener:data synchronization based on Zookeeper;
  • ConsulDataChangedListener: data synchronization based on Consul;
  • EtcdDataDataChangedListener:data synchronization based on etcd;
  • HttpLongPollingDataChangedListener:data synchronization based on http long polling;
  • NacosDataChangedListener:data synchronization based on nacos;

Given that there are so many implementation strategies, how do you decide which to use?

Because this paper is based on zookeeper data synchronization source code analysis, so here to ZookeeperDataChangedListener as an example, the analysis of how it is loaded and implemented.

A global search in the source code project shows that its implementation is done in the DataSyncConfiguration class.

/** * Data Sync Configuration * By springboot conditional assembly * The type Data sync configuration. */@Configurationpublic class DataSyncConfiguration {            /**     * zookeeper data sunc     * The type Zookeeper listener.     */    @Configuration    @ConditionalOnProperty(prefix = "shenyu.sync.zookeeper", name = "url")  // The condition property is loaded only when it is met    @Import(ZookeeperConfiguration.class)    static class ZookeeperListener {
        /**         * Config event listener data changed listener.         * @param zkClient the zk client         * @return the data changed listener         */        @Bean        @ConditionalOnMissingBean(ZookeeperDataChangedListener.class)        public DataChangedListener zookeeperDataChangedListener(final ZkClient zkClient) {            return new ZookeeperDataChangedListener(zkClient);        }
        /**         * Zookeeper data init zookeeper data init.         * @param zkClient        the zk client         * @param syncDataService the sync data service         * @return the zookeeper data init         */        @Bean        @ConditionalOnMissingBean(ZookeeperDataInit.class)        public ZookeeperDataInit zookeeperDataInit(final ZkClient zkClient, final SyncDataService syncDataService) {            return new ZookeeperDataInit(zkClient, syncDataService);        }    }        // other code is omitted......}

This configuration class is implemented through the SpringBoot conditional assembly class. The ZookeeperListener class has several annotations:

  • @Configuration: Configuration file, application context;

  • @ConditionalOnProperty(prefix = "shenyu.sync.zookeeper", name = "url"): attribute condition. The configuration class takes effect only when the condition is met. That is, when we have the following configuration, ZooKeeper is used for data synchronization.

    shenyu:    sync:     zookeeper:          url: localhost:2181          sessionTimeout: 5000          connectionTimeout: 2000
  • @Import(ZookeeperConfiguration.class):import ZookeeperConfiguration;

  @EnableConfigurationProperties(ZookeeperProperties.class)  // enable zookeeper properties  public class ZookeeperConfiguration {
    /**     * register zkClient in spring ioc.     * @param zookeeperProp the zookeeper configuration     * @return ZkClient {@linkplain ZkClient}        */      @Bean      @ConditionalOnMissingBean(ZkClient.class)      public ZkClient zkClient(final ZookeeperProperties zookeeperProp) {        return new ZkClient(zookeeperProp.getUrl(), zookeeperProp.getSessionTimeout(), zookeeperProp.getConnectionTimeout()); // 读取zk配置信息,并创建zkClient      }  }
@Data@ConfigurationProperties(prefix = "shenyu.sync.zookeeper") // zookeeper propertiespublic class ZookeeperProperties {
    private String url;
    private Integer sessionTimeout;
    private Integer connectionTimeout;
    private String serializer;}

When we take the initiative to configuration, use the zookeeper data synchronization, zookeeperDataChangedListener is generated. So in the event handler onApplicationEvent(), it goes to the corresponding listener. In our case, it is a selector data update, data synchronization is zookeeper, so, the code will enter the ZookeeperDataChangedListener selector data change process.

    @Override    @SuppressWarnings("unchecked")    public void onApplicationEvent(final DataChangedEvent event) {        // Iterate through the data change listener (usually using a data synchronization approach is fine)        for (DataChangedListener listener : listeners) {            // what kind of data has changed         switch (event.getGroupKey()) {                                    // other code logic is omitted                                    case SELECTOR:   // selector data                    listener.onSelectorChanged((List<SelectorData>) event.getSource(), event.getEventType());   // In our case, will enter the ZookeeperDataChangedListener selector data change process                    break;         }    }

2.4 Zookeeper Data Changed Listener#

  • ZookeeperDataChangedListener.onSelectorChanged()

In the onSelectorChanged() method, determine the type of action, whether to refresh synchronization or update or create synchronization. Determine whether the node is in zk based on the current selector data.


/** * use ZooKeeper to publish change data */public class ZookeeperDataChangedListener implements DataChangedListener {        // The selector information changed    @Override    public void onSelectorChanged(final List<SelectorData> changed, final DataEventTypeEnum eventType) {        // refresh        if (eventType == DataEventTypeEnum.REFRESH && !changed.isEmpty()) {            String selectorParentPath = DefaultPathConstants.buildSelectorParentPath(changed.get(0).getPluginName());            deleteZkPathRecursive(selectorParentPath);        }        // changed data        for (SelectorData data : changed) {            // build selector real path            String selectorRealPath = DefaultPathConstants.buildSelectorRealPath(data.getPluginName(), data.getId());            // delete            if (eventType == DataEventTypeEnum.DELETE) {                deleteZkPath(selectorRealPath);                continue;            }            // selector parent path            String selectorParentPath = DefaultPathConstants.buildSelectorParentPath(data.getPluginName());            // create parent node            createZkNode(selectorParentPath);            // insert or update data            insertZkNode(selectorRealPath, data);        }    }
    // create zk node    private void createZkNode(final String path) {        // create only if it does not exist        if (!zkClient.exists(path)) {            zkClient.createPersistent(path, true);        }    }
    // insert zk node    private void insertZkNode(final String path, final Object data) {        // create zk node        createZkNode(path);        // write data by zkClient         zkClient.writeData(path, null == data ? "" : GsonUtils.getInstance().toJson(data));    }    }

As long as the changed data is correctly written to the zk node, the admin side of the operation is complete. ShenYu uses zk for data synchronization, zk nodes are carefully designed.

In our current case, updating one of the selector data in the Divide plugin with a weight of 90 updates specific nodes in the graph.

We series the above update flow with a sequence diagram.

3. Gateway Data Sync#

Assume that the ShenYu gateway is already running properly, and the data synchronization mode is also Zookeeper. How does the gateway receive and process the selector data after updating it on the admin side and sending the changed data to ZK? Let's continue our source code analysis to find out.

3.1 ZkClient Accept Data#

  • ZkClient.subscribeDataChanges()

There is a ZookeeperSyncDataService class on the gateway, which subscribing to the data node through ZkClient and can sense when the data changes.

/** * ZookeeperSyncDataService */public class ZookeeperSyncDataService implements SyncDataService, AutoCloseable {    private void subscribeSelectorDataChanges(final String path) {       // zkClient subscribe data         zkClient.subscribeDataChanges(path, new IZkDataListener() {            @Override            public void handleDataChange(final String dataPath, final Object data) {                cacheSelectorData(GsonUtils.getInstance().fromJson(data.toString(), SelectorData.class)); // zk node data changed            }
            @Override            public void handleDataDeleted(final String dataPath) {                unCacheSelectorData(dataPath);  // zk node data deleted            }        });    }     // ...}

ZooKeeper's Watch mechanism notifies subscribing clients of node changes. In our case, updating the selector information goes to the handleDataChange() method. cacheSelectorData() is used to process data.

3.2 Handle Data#

  • ZookeeperSyncDataService.cacheSelectorData()

The data is not null, and caching the selector data is again handled by PluginDataSubscriber.

    private void cacheSelectorData(final SelectorData selectorData) {        Optional.ofNullable(selectorData)                .ifPresent(data -> Optional.ofNullable(pluginDataSubscriber).ifPresent(e -> e.onSelectorSubscribe(data)));    }

PluginDataSubscriber is an interface, it is only a CommonPluginDataSubscriber implementation class, responsible for data processing plugin, selector and rules.

3.3 Common Plugin Data Subscriber#

  • PluginDataSubscriber.onSelectorSubscribe()

It has no additional logic and calls the subscribeDataHandler() method directly. Within methods, there are data types (plugins, selectors, or rules) and action types (update or delete) to perform different logic.

/** * The common plugin data subscriber, responsible for handling all plug-in, selector, and rule information */public class CommonPluginDataSubscriber implements PluginDataSubscriber {    //......     // handle selector data    @Override    public void onSelectorSubscribe(final SelectoData selectorData) {        subscribeDataHandler(selectorData, DataEventTypeEnum.UPDATE);    }            // A subscription data handler that handles updates or deletions of data    private <T> void subscribeDataHandler(final T classData, final DataEventTypeEnum dataType) {        Optional.ofNullable(classData).ifPresent(data -> {            // plugin data            if (data instanceof PluginData) {                PluginData pluginData = (PluginData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                     BaseDataCache.getInstance().cachePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.handlerPlugin(pluginData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removePluginData(pluginData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(pluginData.getName())).ifPresent(handler -> handler.removePlugin(pluginData));                }            } else if (data instanceof SelectorData) {  // selector data                SelectorData selectorData = (SelectorData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                     Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));                } else if (dataType == DataEventTypeEnum.DELETE) {  // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeSelectData(selectorData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.removeSelector(selectorData));                }            } else if (data instanceof RuleData) {  // rule data                RuleData ruleData = (RuleData) data;                if (dataType == DataEventTypeEnum.UPDATE) { // update                    // save the data to gateway memory                    BaseDataCache.getInstance().cacheRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.handlerRule(ruleData));                } else if (dataType == DataEventTypeEnum.DELETE) { // delete                    // delete the data from gateway memory                    BaseDataCache.getInstance().removeRuleData(ruleData);                    // If each plugin has its own processing logic, then do it                    Optional.ofNullable(handlerMap.get(ruleData.getPluginName())).ifPresent(handler -> handler.removeRule(ruleData));                }            }        });    }    }

3.4 Data cached to Memory#

Adding a selector will enter the following logic:

// save the data to gateway memoryBaseDataCache.getInstance().cacheSelectData(selectorData);// If each plugin has its own processing logic, then do itOptional.ofNullable(handlerMap.get(selectorData.getPluginName())).ifPresent(handler -> handler.handlerSelector(selectorData));

One is to save the data to the gateway's memory. BaseDataCache is the class that ultimately caches data, implemented in a singleton pattern. The selector data is stored in the SELECTOR_MAP Map. In the subsequent use, also from this data.

public final class BaseDataCache {    // private instance    private static final BaseDataCache INSTANCE = new BaseDataCache();    // private constructor    private BaseDataCache() {    }        /**     * Gets instance.     *  public method     * @return the instance     */    public static BaseDataCache getInstance() {        return INSTANCE;    }        /**      * A Map of the cache selector data     * pluginName -> SelectorData.     */    private static final ConcurrentMap<String, List<SelectorData>> SELECTOR_MAP = Maps.newConcurrentMap();        public void cacheSelectData(final SelectorData selectorData) {        Optional.ofNullable(selectorData).ifPresent(this::selectorAccept);    }           /**     * cache selector data.     * @param data the selector data     */    private void selectorAccept(final SelectorData data) {        String key = data.getPluginName();        if (SELECTOR_MAP.containsKey(key)) { // Update operation, delete before insert            List<SelectorData> existList = SELECTOR_MAP.get(key);            final List<SelectorData> resultList = existList.stream().filter(r -> !r.getId().equals(data.getId())).collect(Collectors.toList());            resultList.add(data);            final List<SelectorData> collect = resultList.stream().sorted(Comparator.comparing(SelectorData::getSort)).collect(Collectors.toList());            SELECTOR_MAP.put(key, collect);        } else {  // Add new operations directly to Map            SELECTOR_MAP.put(key, Lists.newArrayList(data));        }    }    }

Second, if each plugin has its own processing logic, then do it. Through the IDEA editor, you can see that after adding a selector, there are the following plugins and processing. We're not going to expand it here.

After the above source tracking, and through a practical case, in the admin end to update a selector data, the ZooKeeper data synchronization process analysis is clear.

Let's series the data synchronization process on the gateway side through the sequence diagram:

The data synchronization process has been analyzed. In order to prevent the synchronization process from being interrupted, other logic is ignored during the analysis. We also need to analyze the process of Admin synchronization data initialization and gateway synchronization operation initialization.

4. Admin Data Sync initialization#

When admin starts, the current data will be fully synchronized to zk, the implementation logic is as follows:


/** * Zookeeper data init */public class ZookeeperDataInit implements CommandLineRunner {
    private final ZkClient zkClient;
    private final SyncDataService syncDataService;
    /**     * Instantiates a new Zookeeper data init.     *     * @param zkClient        the zk client     * @param syncDataService the sync data service     */    public ZookeeperDataInit(final ZkClient zkClient, final SyncDataService syncDataService) {        this.zkClient = zkClient;        this.syncDataService = syncDataService;    }
    @Override    public void run(final String... args) {        String pluginPath = DefaultPathConstants.PLUGIN_PARENT;        String authPath = DefaultPathConstants.APP_AUTH_PARENT;        String metaDataPath = DefaultPathConstants.META_DATA;        // Determine whether data exists in zk        if (!zkClient.exists(pluginPath) && !zkClient.exists(authPath) && !zkClient.exists(metaDataPath)) {            syncDataService.syncAll(DataEventTypeEnum.REFRESH);        }    }}

Check whether there is data in zk, if not, then synchronize.

ZookeeperDataInit implements the CommandLineRunner interface. It is an interface provided by SpringBoot that executes the run() method after all Spring Beans initializations and is often used for initialization operations in a project.

  • SyncDataService.syncAll()

Query data from the database, and then perform full data synchronization, all authentication information, plugin information, selector information, rule information, and metadata information. Synchronous events are published primarily through eventPublisher. After publishing the event via publishEvent(), the ApplicationListener performs the event change operation. In ShenYu is mentioned in DataChangedEventDispatcher.

@Servicepublic class SyncDataServiceImpl implements SyncDataService {    // eventPublisher    private final ApplicationEventPublisher eventPublisher;         /***     * sync all data     * @param type the type     * @return     */    @Override    public boolean syncAll(final DataEventTypeEnum type) {        // app auth data        appAuthService.syncData();        // plugin data        List<PluginData> pluginDataList = pluginService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.PLUGIN, type, pluginDataList));        // selector data        List<SelectorData> selectorDataList = selectorService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.SELECTOR, type, selectorDataList));        // rule data        List<RuleData> ruleDataList = ruleService.listAll();        eventPublisher.publishEvent(new DataChangedEvent(ConfigGroupEnum.RULE, type, ruleDataList));        // metadata        metaDataService.syncData();        return true;    }    }

5. Gateway Data Sync Init#

The initial operation of data synchronization on the gateway side is mainly the node in the subscription zk. When there is a data change, the changed data will be received. This relies on the Watch mechanism of ZooKeeper. In ShenYu, the one responsible for zk data synchronization is ZookeeperSyncDataService, also mentioned earlier.

The function logic of ZookeeperSyncDataService is completed in the process of instantiation: the subscription to Shenyu data synchronization node in zk is completed. Subscription here is divided into two kinds, one kind is existing node data updated above, through this zkClient.subscribeDataChanges() method; Another kind is under the current node, add or delete nodes change namely child nodes, it through zkClient.subscribeChildChanges() method.

ZookeeperSyncDataService code is a bit too much, here we use plugin data read and subscribe to track, other types of data operation principle is the same.


/** *  zookeeper sync data service */public class ZookeeperSyncDataService implements SyncDataService, AutoCloseable {    // At instantiation time, the data is read from the ZK and the node is subscribed    public ZookeeperSyncDataService(/* omit the construction argument */ ) {        this.zkClient = zkClient;        this.pluginDataSubscriber = pluginDataSubscriber;        this.metaDataSubscribers = metaDataSubscribers;        this.authDataSubscribers = authDataSubscribers;        // watch plugin, selector and rule data        watcherData();        // watch app auth data        watchAppAuth();        // watch metadata        watchMetaData();    }        private void watcherData() {        // plugin node path        final String pluginParent = DefaultPathConstants.PLUGIN_PARENT;        // all plugin nodes        List<String> pluginZKs = zkClientGetChildren(pluginParent);        for (String pluginName : pluginZKs) {            // watch plugin, selector, rule data node            watcherAll(pluginName);        }        //subscribing to child nodes (adding or removing a plugin)        zkClient.subscribeChildChanges(pluginParent, (parentPath, currentChildren) -> {            if (CollectionUtils.isNotEmpty(currentChildren)) {                for (String pluginName : currentChildren) {                    // you need to subscribe to all plugin, selector, and rule data for the child node                      watcherAll(pluginName);                }            }        });    }        private void watcherAll(final String pluginName) {        // watch plugin        watcherPlugin(pluginName);        // watch selector        watcherSelector(pluginName);        // watch rule        watcherRule(pluginName);    }
    private void watcherPlugin(final String pluginName) {        // plugin path        String pluginPath = DefaultPathConstants.buildPluginPath(pluginName);        // create if not exist        if (!zkClient.exists(pluginPath)) {            zkClient.createPersistent(pluginPath, true);        }        // read the current node data on zk and deserialize it        PluginData pluginData = null == zkClient.readData(pluginPath) ? null                : GsonUtils.getInstance().fromJson((String) zkClient.readData(pluginPath), PluginData.class);        // cached into gateway memory        cachePluginData(pluginData);        // subscribe plugin data        subscribePluginDataChanges(pluginPath, pluginName);    }       private void cachePluginData(final PluginData pluginData) {    //omit implementation logic, is actually the CommonPluginDataSubscriber operation, can connect with the front    }        private void subscribePluginDataChanges(final String pluginPath, final String pluginName) {        // subscribe data changes        zkClient.subscribeDataChanges(pluginPath, new IZkDataListener() {
            @Override            public void handleDataChange(final String dataPath, final Object data) {  // update                 //omit implementation logic, is actually the CommonPluginDataSubscriber operation, can connect with the front            }
            @Override            public void handleDataDeleted(final String dataPath) {   // delete                  // Omit implementation logic, is actually the CommonPluginDataSubscriber operation, can connect with the front
            }        });    }    }    

The above source code is given comments, I believe you can understand. The main logic for subscribing to plug-in data is as follows:

  1. Create the current plugin path
  2. Create a path if it does not exist
  3. Read the current node data on zK and deserialize it
  4. The plugin data is cached in the gateway memory
  5. Subscribe to the plug-in node

6. Summary#

This paper through a practical case, Zookeeper data synchronization principle source code analysis. The main knowledge points involved are as follows:

  • Data synchronization based on ZooKeeper is mainly implemented through watch mechanism;

  • Complete event publishing and listening via Spring;

  • Support multiple synchronization strategies through abstract DataChangedListener interface, interface oriented programming;

  • Use singleton design pattern to cache data class BaseDataCache;

  • Loading of configuration classes via conditional assembly of SpringBoot and starter loading mechanism.

E2e Test Analysis

· 8 min read
Haiqi Qin
Apache ShenYu Committer

This article will conduct an in-depth analysis of Apache ShenYu e2e module.

what is e2e#

e2e (end to end), also known as end-to-end testing, is a method used to test whether the application flow performs as designed from the beginning to the end. The purpose of performing end-to-end testing is to identify system dependencies and ensure that the correct information is passed between various system components and systems. The purpose of end-to-end testing is to test the entire software for dependencies, data integrity, and communication with other systems, interfaces, and databases to simulate a complete production scenario.

Advantages of e2e#

e2e testing can test the integrity and accuracy of software systems in simulated real user scenarios, and can verify whether the entire system works as expected and whether different components can work together. There are several benefits of e2e testing:

  1. Help ensure the correctness of system functions.e2e testing can simulate the interaction and operation in real user scenarios, verify whether the entire system can work as expected, and help discover potential problems and defects in the system.
  2. Improve test coverage.e2e testing can cover the entire system, including front-end, back-end, database and other different levels and components, thereby improving test coverage and ensuring comprehensiveness and accuracy of testing.
  3. Ensure the stability of the system.e2e testing can check the stability and robustness of the system in various situations, including system response time, error handling capabilities, concurrency, etc., to help ensure that the system is in the face of high load and abnormal conditions Still able to maintain stable operation.
  4. Reduce testing cost.e2e testing can improve testing efficiency and accuracy, reduce testing cost and time, and thus help enterprises release and deliver high-quality software products more quickly.

In short, e2e testing is a comprehensive testing method that can verify whether the entire system works as expected, improve test coverage and test efficiency, thereby ensuring the stability and correctness of the system, and reducing testing costs and time. And effective testing methods, so we need to improve e2e related codes.

How to implement automated e2e testing#

In Apache ShenYu, the main steps of e2e testing are reflected in the script of the GitHub Action workflow, as shown below, the script is located at ~/.github/workflows directory in the e2e file.

name: e2e
on:  pull_request:  push:    branches:      - masterjobs:  changes:    ...  build-docker-images:    ...  e2e-http:    ...  e2e-case:    runs-on: ubuntu-latest    needs:      - changes      - build-docker-images    if: ${{ needs.changes.outputs.e2e == 'true' }}    strategy:      matrix:        case: [ "shenyu-e2e-case-spring-cloud", "shenyu-e2e-case-apache-dubbo", "shenyu-e2e-case-sofa" ]    steps:      - uses: actions/checkout@v3        with:          submodules: true      - name: Load ShenYu Docker Images        run: |          docker load --input /tmp/apache-shenyu-admin.tar          docker load --input /tmp/apache-shenyu-bootstrap.tar          docker image ls -a      - name: Build examples with Maven        run: ./mvnw -B clean install -Pexample -Dmaven.javadoc.skip=true -Dmaven.test.skip=true -f ./shenyu-examples/pom.xml      - name: Run ShenYu E2E Tests        env:          storage: mysql        run: |          bash ./shenyu-e2e/script/storage_init.sh          ./mvnw -B -f ./shenyu-e2e/pom.xml -pl shenyu-e2e-case/${{ matrix.case }} -Dstorage=mysql test

When the workflow is triggered, use the dockerfile under the shenyu-dist module to build and upload the images of the admin and bootstrap projects. When the e2e test module is running, the admin and bootstrap images can be loaded. Then build the modules in the examples, and finally execute the test method of the corresponding test module.

How to run e2e test locally#

If you need to write e2e test cases, you first need to code and debug locally. Currently e2e supports two startup methods, one is docker startup and the other is host startup. These two modes can be switched in the @ShenYuTest annotation in the test class. The host startup method directly starts the services that need to be started locally to run the test code. Before using docker to start, you need to build the corresponding image first. Because ShenYu currently needs to support e2e testing in the github workflow, it is recommended to use the docker startup method.

Analysis of e2e startup process#

Currently, the e2e module is mainly divided into four parts: case, client, common and engine.

e2e-modules

The case module stores the test cases of the plug-in, and the client module writes the clients of admin and gateway to request corresponding interfaces. Common stores some public classes, and the engine module is the core of the framework. Relying on the testcontainer framework, use java code to start the docker container and complete the configuration operations for admin and gatewat.

Next, I will analyze the e2e startup process based on the source code.

When we execute the test method in the case, the @ShenYuTest annotation will take effect and extend the test class. Through @ShenYuTest, we can choose the startup method, configure related parameters for admin and gateway, and choose the docker-compose file to be executed. For admin and gateway, you can configure the user name, password, data synchronization method and modify the content of yaml required for login.

@ShenYuTest(        mode = ShenYuEngineConfigure.Mode.DOCKER,        services = {                @ShenYuTest.ServiceConfigure(                        serviceName = "admin",                        port = 9095,                        baseUrl = "http://{hostname:localhost}:9095",                        parameters = {                                @ShenYuTest.Parameter(key = "username", value = "admin"),                                @ShenYuTest.Parameter(key = "password", value = "123456"),                                @ShenYuTest.Parameter(key = "dataSyn", value = "admin_websocket")                        }                ),                @ShenYuTest.ServiceConfigure(                        serviceName = "gateway",                        port = 9195,                        baseUrl = "http://{hostname:localhost}:9195",                         type = ShenYuEngineConfigure.ServiceType.SHENYU_GATEWAY,                        parameters = {                          @ShenYuTest.Parameter(key = "application", value =  "spring.cloud.discovery.enabled:true,eureka.client.enabled:true"),                           @ShenYuTest.Parameter(key = "dataSyn", value = "gateway_websocket")})},                   dockerComposeFile = "classpath:./docker-compose.mysql.yml")

@ShenYuTest is extended through the ShenYuExtension class, and the configuration of admin and gateway takes effect in beforeAll in ShenYuExtension. The specific effective logic is implemented in the DockerServiceCompose class.

e2e-shenyutest

e2e-beforeall

@ShenYuTest configuration items take effect before docker starts, mainly by modifying the yaml file in the resource directory of the test module. Currently, e2e supports testing of different data synchronization methods. The principle is to use the chooseDataSyn method in the DockerServiceCompose class. In the DataSyncHandler, initialize the content that needs to be modified in various data synchronization methods, and finally start the container.

e2e-docer-service-compose

e2e-datahandle-syn

When docker is started, start testing the plug-in function. In the PluginsTest class, there are pre- and post-operations for testing.

    @BeforeAll    static void setup(final AdminClient adminClient, final GatewayClient gatewayClient) throws InterruptedException, JsonProcessingException {        adminClient.login();        Thread.sleep(10000);        List<SelectorDTO> selectorDTOList = adminClient.listAllSelectors();        List<MetaDataDTO> metaDataDTOList = adminClient.listAllMetaData();        List<RuleDTO> ruleDTOList = adminClient.listAllRules();        Assertions.assertEquals(2, selectorDTOList.size());        Assertions.assertEquals(13, metaDataDTOList.size());        Assertions.assertEquals(14, ruleDTOList.size());                for (SelectorDTO selectorDTO : selectorDTOList) {            if (selectorDTO.getHandle() != null && !"".equals(selectorDTO.getHandle())) {                SpringCloudPluginCases.verifierUri(selectorDTO.getHandle());            }        }        List<MetaData> metaDataCacheList = gatewayClient.getMetaDataCache();        List<SelectorCacheData> selectorCacheList = gatewayClient.getSelectorCache();        List<RuleCacheData> ruleCacheList = gatewayClient.getRuleCache();        Assertions.assertEquals(2, selectorCacheList.size());        Assertions.assertEquals(13, metaDataCacheList.size());        Assertions.assertEquals(14, ruleCacheList.size());
        MultiValueMap<String, String> formData = new LinkedMultiValueMap<>();        formData.add("id", "8");        formData.add("name", "springCloud");        formData.add("enabled", "true");        formData.add("role", "Proxy");        formData.add("sort", "200");        adminClient.changePluginStatus("8", formData);        String id = "";        for (SelectorDTO selectorDTO : selectorDTOList) {            if (!"".equals(selectorDTO.getHandle())) {                id = selectorDTO.getId();            }        }        adminClient.deleteSelectors(id);        selectorDTOList = adminClient.listAllSelectors();        Assertions.assertEquals(1, selectorDTOList.size());    }

Taking the springcloud plug-in as an example, you first need to test whether the registration center and data synchronization can work normally, then start the plug-in and delete the existing selector. To test whether the data is successfully registered into the registration center, you can call the interface of the admin client to test, and to test whether the data synchronization is successful, you can obtain the cache of the gateway for testing.

Then run the test case in the case file and get the use case through @ShenYuScenario.

    @ShenYuScenario(provider = SpringCloudPluginCases.class)    void testSpringCloud(GatewayClient gateway, CaseSpec spec) {        spec.getVerifiers().forEach(verifier -> verifier.verify(gateway.getHttpRequesterSupplier().get()));    }

For different plug-ins, we can build a Case class to store the rules to be tested. All test rules are stored in the list and tested in order. Build selectors and rules in beforeEachSpec, caseSpec stores test entities, if they meet the uri rules, they should exist, otherwise they don’t exist. We need to simulate users to add selectors and rules, because the handler rules of the selectors of each plug-in are not necessarily the same, so we need to write its handle class according to the plug-in requirements. And verify that it complies with the rules with the request. Specific test cases are mainly divided into two categories, one is to match uri rules, such as euqal, path_pattern, start_with, end_with, and the other is request types, such as get, put, post, delete.

When all eight matching conditions are tested, it can be judged that the plug-in function is normal. After the test, we need to restore the environment, delete all selectors, set the plug-in to unavailable, and finally close all containers.

    @Override    public List<ScenarioSpec> get() {        return Lists.newArrayList(                testWithUriEquals(),                testWithUriPathPattern(),                testWithUriStartWith(),                testWithEndWith(),                testWithMethodGet(),                testWithMethodPost(),                testWithMethodPut(),                testWithMethodDelete()        );    }
    private ShenYuScenarioSpec testWithUriEquals() {        return ShenYuScenarioSpec.builder()                .name("single-spring-cloud uri =]")                .beforeEachSpec(                        ShenYuBeforeEachSpec.builder()                                .addSelectorAndRule(                                        newSelectorBuilder("selector", Plugin.SPRING_CLOUD)                                               .handle(SpringCloudSelectorHandle.builder().serviceId("springCloud-test")                                                        .gray(true)                                                        .divideUpstreams(DIVIDE_UPSTREAMS).build())                                                .conditionList(newConditions(Condition.ParamType.URI, Condition.Operator.EQUAL, TEST))                                                .build(),                                        newRuleBuilder("rule")                               .handle(SpringCloudRuleHandle.builder().loadBalance("hash").timeout(3000).build())                                                .conditionList(newConditions(Condition.ParamType.URI, Condition.Operator.EQUAL, TEST))                                                .build()                                )                                .checker(notExists(TEST))                                .waiting(exists(TEST))                                .build()                )                .caseSpec(                        ShenYuCaseSpec.builder()                                .addExists(TEST)                                .addNotExists("/springcloud/te")                                .addNotExists("/put")                                .addNotExists("/get")                                .build()                )                .afterEachSpec(ShenYuAfterEachSpec.DEFAULT)                .build();    }