
Apache ShenYu document

Apache ShenYu

2021年 08月 31日

Contents

1 什么是 Apache ShenYu 1

2 功能 2

3 架构图 3

4 脑图 4

5 模块 5

6 关于 6

7 设计文档 7
7.1 ShenYu Admin数据结构 . 7

7.1.1 插件、选择器和规则 . 7
7.1.2 资源权限 . 7
7.1.3 数据权限 . 8
7.1.4 元数据 . 8
7.1.5 字典管理 . 8

7.2 数据同步原理 . 8
7.2.1 背景 . 9
7.2.2 原理分析 . 9
7.2.3 Zookeeper同步原理 . 10
7.2.4 WebSocket同步原理 . 12
7.2.5 Http长轮询同步原理 . 12
7.2.6 Nacos同步原理 . 12
7.2.7 Etcd同步原理 . 13
7.2.8 Consul同步原理 . 13

7.3 客户端接入原理 . 13
7.3.1 设计原理 . 13

注册中心客户端 . 14
注册中心服务端 . 15
Http注册原理 . 16

i

Zookeeper注册原理 . 16
7.3.2 Etcd注册原理 . 17
7.3.3 Consul注册原理 . 17
7.3.4 Nacos注册原理 . 18

SPI扩展 . 18
7.4 流量控制 . 19

7.4.1 插件 . 19
7.4.2 选择器和规则 . 19
7.4.3 流量筛选 . 19

7.5 SPI . 19
7.5.1 注册中心扩展 . 20
7.5.2 监控中心扩展 . 20
7.5.3 负载均衡扩展 . 20
7.5.4 RateLimiter扩展 . 20
7.5.5 匹配方式扩展 . 20
7.5.6 条件参数扩展 . 20
7.5.7 条件策略扩展 . 20

8 运维部署 21
8.1 本地启动 . 21

8.1.1 环境准备 . 21
8.1.2 下载编译代码 . 21

8.2 二进制包部署 . 22
8.2.1 启动 Apache ShenYu Admin . 22
8.2.2 启动 Apache ShenYu Bootstrap . 22

8.3 docker部署 . 22
8.3.1 启动 Apache ShenYu Admin . 22
8.3.2 启动 Apache ShenYu Bootstrap . 23

8.4 k8s部署 . 23
8.4.1 一. 使用 h2作为数据库 . 23

1. 创建 nameSpace和 configMap . 23
2. 部署 shenyu‐admin . 25
3. 部署 shenyu‐bootstrap . 26

8.4.2 二. 使用mysql作为数据库 . 27
1. 创建 nameSpace和 configMap . 27
2. 创建 endpoint代理外部mysql . 29
4. 部署 shenyu‐admin . 30
3. 部署 shenyu‐bootstrap . 32

8.5 helm部署 . 33
8.6 自定义搭建网关 . 33

8.6.1 启动 Apache ShenYu Admin . 33
8.6.2 搭建自己的网关（推荐） . 33

9 快速开始 35
9.1 Http快速开始 . 35

ii

9.1.1 环境准备 . 35
9.1.2 运行 shenyu‐examples‐http项目 . 36
9.1.3 测试Http请求 . 36

9.2 Dubbo快速开始 . 37
9.2.1 环境准备 . 37
9.2.2 运行 shenyu‐examples‐dubbo项目 . 40
9.2.3 测试 . 42

9.3 Spring Cloud快速开始 . 44
9.3.1 环境准备 . 44
9.3.2 运行 shenyu‐examples‐springcloud . 45
9.3.3 测试Http请求 . 47

9.4 Sofa快速开始 . 48
9.4.1 环境准备 . 48
9.4.2 运行 shenyu‐examples‐sofa项目 . 49
9.4.3 测试 . 53

9.5 gRPC快速开始 . 54
9.5.1 环境准备 . 54
9.5.2 运行 shenyu‐examples‐grpc项目 . 55
9.5.3 简单测试 . 56
9.5.4 流式调用 . 56

9.6 Tars快速开始 . 58
9.6.1 环境准备 . 58
9.6.2 运行 shenyu‐examples‐tars项目 . 58
9.6.3 测试 . 60

9.7 Motan快速开始 . 61
9.7.1 环境准备 . 61
9.7.2 运行 shenyu‐examples‐motan项目 . 62
9.7.3 测试Http请求 . 63

10 用户文档 64
10.1 数据同步配置 . 64

10.1.1 WebSocket同步配置（默认方式，推荐） . 64
10.1.2 Zookeeper同步配置 . 65
10.1.3 Http长轮询同步配置 . 66
10.1.4 Nacos同步配置 . 66
10.1.5 Etcd同步配置 . 67
10.1.6 Consul同步配置 . 68

10.2 客户端接入配置 . 69
10.2.1 Http方式注册配置 . 69

shenyu‐admin配置 . 69
shenyu‐client配置 . 70

10.2.2 Zookeeper方式注册配置 . 70
shenyu‐admin配置 . 70
shenyu‐client配置 . 71

10.2.3 Etcd方式注册配置 . 71

iii

shenyu‐admin配置 . 71
shenyu‐client配置 . 72

10.2.4 Consul方式注册配置 . 73
shenyu‐admin配置 . 73
shenyu‐client配置 . 74

10.2.5 Nacos方式注册配置 . 75
shenyu‐admin配置 . 75
shenyu‐client配置 . 75

10.3 Http服务接入 . 76
10.3.1 在网关中引入 divide插件 . 76
10.3.2 Http请求接入网关（springMvc体系用户） . 77
10.3.3 Http请求接入网关（其他语言，非 springMvc体系） 79
10.3.4 用户请求 . 79

10.4 Dubbo服务接入 . 79
10.4.1 说明 . 79
10.4.2 在网关中引入 dubbo插件 . 80
10.4.3 dubbo服务接入网关 . 81
10.4.4 dubbo插件设置 . 83
10.4.5 接口注册到网关 . 83
10.4.6 dubbo用户请求及参数说明 . 83
10.4.7 服务治理 . 85
10.4.8 Http –>网关–> Dubbo Provider . 86

10.5 Spring Cloud服务接入 . 87
10.5.1 在网关中引入 springCloud插件 . 87
10.5.2 SpringCloud服务接入网关 . 89
10.5.3 用户请求 . 91

10.6 Sofa服务接入 . 91
10.6.1 在网关中引入 sofa插件 . 91
10.6.2 sofa服务接入网关 . 92
10.6.3 sofa插件设置 . 93
10.6.4 接口注册到网关 . 93
10.6.5 sofa用户请求及参数说明 . 93

10.7 gRPC服务接入 . 94
10.7.1 在网关中引入 grpc插件 . 94
10.7.2 gRPC服务接入网关 . 95
10.7.3 用户请求 . 95

10.8 Tars服务接入 . 97
10.8.1 在网关中引入 tars插件 . 98
10.8.2 Tars服务接入网关 . 98
10.8.3 用户请求 . 99

10.9 Motan服务接入 . 99
10.9.1 在网关中引入motan插件 . 99
10.9.2 Motan服务接入网关 . 100
10.9.3 用户请求 . 101

iv

11 开发者文档 102
11.1 自定义 Filter . 102

11.1.1 说明 . 102
11.1.2 跨域支持 . 102
11.1.3 网关过滤 springboot健康检查 . 103
11.1.4 继承 org.apache.shenyu.web.filter.AbstractWebFilter 104

11.2 插件扩展 . 104
11.2.1 说明 . 104
11.2.2 单一职责插件 . 105
11.2.3 匹配流量处理插件 . 106
11.2.4 订阅你的插件数据，进行自定义的处理 . 108

11.3 文件上传下载 . 110
11.3.1 说明 . 110
11.3.2 文件上传 . 110
11.3.3 文件下载 . 110

11.4 正确获取 IP与Host . 110
11.4.1 说明 . 110
11.4.2 默认实现 . 111
11.4.3 扩展实现 . 111

11.5 自定义返回结果 . 111
11.5.1 说明 . 111
11.5.2 默认实现 . 112
11.5.3 扩展 . 112

11.6 自定义 sign插件检验算法 . 113
11.6.1 说明 . 113
11.6.2 扩展 . 113

11.7 多语言Http客户端 . 114
11.7.1 说明 . 114
11.7.2 自定义开发 . 114

11.8 线程模型 . 114
11.8.1 说明 . 114
11.8.2 IO与Work线程 . 114
11.8.3 业务线程 . 115
11.8.4 切换类型 . 115

11.9 ShenYu性能优化 . 115
11.9.1 说明 . 115
11.9.2 本身消耗 . 115
11.9.3 底层 Netty调优 . 115

12 版本发布 117
12.1 2.3.0 . 117

12.1.1 soul‐admin . 117
12.1.2 soul‐bootstrap . 117

12.2 2.2.0 . 118

v

13 下载 119
13.1 最新版本 . 119

13.1.1 Apache ShenYu (incubating) - 版 本: 2.4.0 (发 布 日 期: Aug 8,
2021) . 119

13.2 校验版本 . 119
13.3 PDF . 120

vi

1
什么是 Apache ShenYu

这是一个异步的，高性能的，跨语言的，响应式的 API网关。

1

2
功能

• 支持各种语言 (http协议)，支持 Dubbo、Spring Cloud、gRPC、Motan、Sofa、Tars等协议。
• 插件化设计思想，插件热插拔，易扩展。
• 灵活的流量筛选，能满足各种流量控制。
• 内置丰富的插件支持，鉴权，限流，熔断，防火墙等等。
• 流量配置动态化，性能极高。
• 支持集群部署，支持 A/B Test，蓝绿发布。

2

3
架构图

3

4
脑图

4

5
模块

• shenyu‐admin : 插件和其他信息配置的管理后台
• shenyu‐bootstrap : 用于启动项目，用户可以参考
• shenyu‐client : 用户可以使用 Spring MVC，Dubbo，Spring Cloud快速访问
• shenyu‐disruptor : 基于 disruptor的封装
• shenyu‐register‐center : shenyu‐client提供各种 rpc接入注册中心的支持
• shenyu‐common : 框架的通用类
• shenyu‐dist : 构建项目
• shenyu‐metrics : prometheus（普罗米修斯）实现的metrics

• shenyu‐plugin : ShenYu支持的插件集合
• shenyu‐spi : 定义 ShenYu spi

• shenyu‐spring‐boot‐starter : 支持 spring boot starter

• shenyu‐sync‐data‐center : 提供 ZooKeeper，HTTP，WebSocket，Nacos的方式同步数据
• shenyu‐examples : RPC示例项目
• shenyu‐web : 包括插件、请求路由和转发等的核心处理包

5

6
关于

Apache ShenYu已经被很多公司广泛使用在越来越多的业务系统，它能以高性能和灵活性让我们方便快
捷的集成自己的服务和 API。
在中国的双 11购物狂欢节中，Apache ShenYu集群成功支撑了海量的互联网业务。

6

7
设计文档

7.1 ShenYu Admin数据结构

Apache ShenYu Admin是网关的后台管理系统，能够可视化管理所有插件、选择器和规则，设置用户、
角色，控制资源。

7.1.1 插件、选择器和规则

• 插件：Apache ShenYu使用插件化设计思想，实现插件的热插拔，极易扩展。内置丰富的插件，包
括 RPC代理、熔断和限流、权限认证、监控等等。

• 选择器：每个插件可设置多个选择器，对流量进行初步筛选。
• 规则：每个选择器可设置多个规则，对流量进行更细粒度的控制。
• 数据库 UML类图:

• 设计详解:

– 一个插件对应多个选择器，一个选择器对应多个规则。
– 一个选择器对应多个匹配条件，一个规则对应多个匹配条件。
– 每个规则在对应插件下，有不同的处理能力。

7.1.2 资源权限

• 资源代表的是 shenyu-admin用户后台中的菜单或者按钮。
• 资源权限数据表用来存储用户名称、角色、资源数据以及对应关系。
• 数据库 UML类图：
• 设计详解:

– 一个用户对应多个角色，一个角色对应多个资源。

7

Apache ShenYu document

7.1.3 数据权限

• 数据权限表用来存储用户，选择器、规则对应关系。
• 数据库 UML类图：
• 设计详解：

– 数据权限的表为：data_permission，一个用户对应多条数据权限。
– 数据权限表中字段 data_type区分不同的类型数据，具体对应关系如下：0 -> 选择器, 1
-> 规则。

– 数据权限表中字段 data_id存放相应类型的主键 id。

7.1.4 元数据

• 元数据主要是用于网关的泛化调用。
• 每个接口方法，对应一条元数据。
• 数据库 UML类图：
• 设计详解：

– path：在请求网关的时候，会根据 path来匹配到一条数据，然后进行后续的流程。
– rpc_ext：用于保存 RPC代理中的扩展信息。

7.1.5 字典管理

• 字典管理主要用来维护和管理公用数据字典。
• 数据库 UML类图：

7.2 数据同步原理

本篇主要讲解数据同步原理，数据同步是指在 shenyu-admin后台操作数据以后，使用何种策略将数据
同步到 Apache ShenYu网关。Apache ShenYu网关当前支持 ZooKeeper、WebSocket、Http 长
轮询、Nacos、Etcd和 Consul进行数据同步。
数据同步的相关配置请参考用户文档中的数据同步配置。

7.2. 数据同步原理 8

Apache ShenYu document

7.2.1 背景

网关是流量请求的入口，在微服务架构中承担了非常重要的角色，网关高可用的重要性不言而喻。在使
用网关的过程中，为了满足业务诉求，经常需要变更配置，比如流控规则、路由规则等等。因此，网关动
态配置是保障网关高可用的重要因素。
在实际使用 Apache ShenYu网关过程中，用户也反馈了一些问题：

• 依赖 Zookeeper，怎么使用 Etcd、Consul、Nacos等其他注册中心？
• 依赖 Redis、influxdb，没有使用限流插件、监控插件，为什么需要这些？
• 配置同步为什么不使用配置中心？
• 为什么不能动态配置更新？
• 每次都要查询数据库，使用 Redis不就行了吗？

根据用户的反馈信息，我们对 Apache ShenYu也进行了部分的重构，当前数据同步特性如下：
• 所有的配置都缓存在 Apache ShenYu网关内存中，每次请求都使用本地缓存，速度非常快。
• 用户可以在 shenyu-admin后台任意修改数据，并马上同步到网关内存。
• 支持 Apache ShenYu的插件、选择器、规则数据、元数据、签名数据等数据同步。
• 所有插件的选择器，规则都是动态配置，立即生效，不需要重启服务。
• 数据同步方式支持 Zookeeper、Http 长轮询、Websocket、Nacos、Etcd和 Consul。

7.2.2 原理分析

下图展示了 Apache ShenYu数据同步的流程，Apache ShenYu网关在启动时，会从配置服务同步配置
数据，并且支持推拉模式获取配置变更信息，然后更新本地缓存。管理员可以在管理后台（shenyu-admin），
变更用户权限、规则、插件、流量配置，通过推拉模式将变更信息同步给 Apache ShenYu网关，具体
是 push模式，还是 pull模式取决于使用哪种同步方式。

7.2. 数据同步原理 9

Apache ShenYu document

在最初的版本中，配置服务依赖 Zookeeper实现，管理后台将变更信息 push给网关。而现在可以支持
WebSocket、Http 长轮询、Zookeeper、Nacos、Etcd和 Consul，通过在配置文件中设置 shenyu.
sync.${strategy}指定对应的同步策略，默认使用 webosocket同步策略，可以做到秒级数据同步。
但是，有一点需要注意的是，Apache ShenYu网关和 shenyu-admin必须使用相同的同步策略。
如下图所示，shenyu-admin在用户发生配置变更之后，会通过 EventPublisher发出配置变更通知，
由 EventDispatcher处理该变更通知，然后根据配置的同步策略 (http、weboscket、zookeeper、
naocs、etcd、consul)，将配置发送给对应的事件处理器。

• 如果是 websocket同步策略，则将变更后的数据主动推送给 shenyu-web，并且在网关层，会有
对应的 WebsocketDataHandler处理器来处理 shenyu-admin的数据推送。

• 如果是 zookeeper同步策略，将变更数据更新到 zookeeper，而 ZookeeperSyncCache会监
听到 zookeeper的数据变更，并予以处理。

• 如果是 http同步策略，由网关主动发起长轮询请求，默认有 90s超时时间，如果 shenyu-admin
没有数据变更，则会阻塞 http请求，如果有数据发生变更则响应变更的数据信息，如果超过 60s
仍然没有数据变更则响应空数据，网关层接到响应后，继续发起 http请求，反复同样的请求。

7.2.3 Zookeeper同步原理

基于 zookeeper的同步原理很简单，主要是依赖 zookeeper的 watch机制。Apache ShenYu网关
会监听配置的节点，shenyu-admin在启动的时候，会将数据全量写入 zookeeper，后续数据发生变
更时，会增量更新 zookeeper的节点，与此同时，Apache ShenYu网关会监听配置信息的节点，一旦
有信息变更时，会更新本地缓存。
Apache ShenYu将配置信息写到 zookeeper节点，是通过精心设计的，如果您想深入了解代码实现，
请参考源码 ZookeeperSyncDataService。

7.2. 数据同步原理 10

Apache ShenYu document

图 1: zookeeper节点设计7.2. 数据同步原理 11

Apache ShenYu document

7.2.4 WebSocket同步原理

websocket 和 zookeeper 机制有点类似，将网关与 shenyu-admin 建立好 websocket 连接时，
shenyu-admin 会推送一次全量数据，后续如果配置数据发生变更，则以增量形式将变更数据通过
websocket主动推送给 Apache ShenYu网关。
使用 websocket 同步的时候，特别要注意断线重连，也就是要保持心跳。Apache ShenYu 使用
java-websocket这个第三方库来进行 websocket连接。如果您想深入了解代码实现，请参考源码
WebsocketSyncDataService。

7.2.5 Http长轮询同步原理

Zookeeper和 WebSocket数据同步的机制比较简单，而 Http 长轮询则比较复杂。Apache ShenYu
借鉴了 Apollo、Nacos的设计思想，取其精华，自己实现了 Http 长轮询数据同步功能。注意，这里
并非传统的 ajax长轮询！
Http 长轮询机制如上所示，Apache ShenYu网关主动请求 shenyu-admin的配置服务，读取超时时
间为 90s，意味着网关层请求配置服务最多会等待 90s，这样便于 shenyu-admin配置服务及时响应变
更数据，从而实现准实时推送。
http请求到达 shenyu-admin之后，并非立马响应数据，而是利用 Servlet3.0的异步机制，异步响
应数据。首先，将长轮询请求任务 LongPollingClient扔到 BlockingQueue中，并且开启调度任务，
60s后执行，这样做的目的是 60s后将该长轮询请求移除队列。因为即便是没有配置变更，也需要让网
关知道，不能一直等待。而且网关请求配置服务时，也有 90s的超时时间。
如果这段时间内，管理员在 shenyu-admin变更了配置数据，此时，会挨个移除队列中的长轮询请求，
并响应数据，告知是哪个 Group的数据发生了变更（我们将插件、规则、流量配置、用户配置数据分成
不同的组）。网关收到响应信息之后，只知道是哪个 Group发生了配置变更，还需要再次请求该 Group
的配置数据。这里可能会存在一个疑问：为什么不是直接将变更的数据写出？我们在开发的时候，也深
入讨论过该问题，因为 http 长轮询机制只能保证准实时，如果在网关层处理不及时，或者管理员频繁
更新配置，很有可能便错过了某个配置变更的推送，安全起见，我们只告知某个 Group信息发生了变更。
当 shenyu-web 网关层接收到 http 响应信息之后，拉取变更信息（如果有变更的话） ，然后
再次请求 shenyu-admin 的配置服务，如此反复循环。如果您想深入了解代码实现，请参考源码
HttpSyncDataService。

7.2.6 Nacos同步原理

Nacos 的同步原理与 Zookeeper 基本类似，主要依赖于 Nacos 的配置管理, 各个配置节点的路径与
Zookeeper类似。
Apache ShenYu网关会监听配置的节点，启动时，如果 Nacos中不存在配置节点，将同步全量的数据
写入 Nacos中，后序数据发送变更时，全量更新 Nacos中的配置节点，与此同时，Apache ShenYu
网关会监听配置信息的节点，一旦有信息变更时，会更新本地缓存。
如果您想深入了解代码实现，请参考源码 NacosSyncDataService和 Nacos的官方文档。

7.2. 数据同步原理 12

https://nacos.io/zh-cn/docs/sdk.html

Apache ShenYu document

7.2.7 Etcd同步原理

Etcd 数据同步原理与 Zookeeper 类似，主要依赖于 Etcd 的 watch 机制，各个配置节点路径与
Zookeeper相同。
Etcd的原生 API使用稍有点复杂，所有对其进行了一定的封装。
Apache ShenYu网关会监听配置的节点，启动时，如果 Etcd中不存在配置节点，将同步全量的数据
写入 Etcd中，后序数据发送变更时，增量更新 Etcd中的配置节点，与此同时，Apache ShenYu网
关会监听配置信息的节点，一旦有信息变更时，会更新本地缓存。
如果您想深入了解代码实现，请参考源码 EtcdSyncDataService。

7.2.8 Consul同步原理

Consul数据同步原理是网关定时轮询 Consul的配置中心，获取配置版本号与本地进行比对。
Apache ShenYu网关会定时轮询配置的节点，默认间隔时间为 1s。启动时，如果 Consul中不存在配
置节点，将同步全量的数据写入 Consul中，后续数据发送变更时，增量更新 Consul中的配置节点，与
此同时，Apache ShenYu网关会定时轮询配置信息的节点，拉取配置版本号与本地进行比对，若发现
版本号变更时，会更新本地缓存。
如果您想深入了解代码实现，请参考源码 ConsulSyncDataService。

7.3 客户端接入原理

应用客户端接入是指将你的微服务接入到 Apache ShenYu网关，当前支持 Http、Dubbo、Spring
Cloud、gRPC、Motan、Sofa、Tars等协议的接入。
将应用客户端接入到 Apache ShenYu网关是通过注册中心来实现的，涉及到客户端注册和服务端同步
数据。注册中心支持 Http、Zookeeper、Etcd、Consul和 Nacos。
客户端接入的相关配置请参考用户文档中的客户端接入配置。

7.3.1 设计原理

7.3. 客户端接入原理 13

Apache ShenYu document

注册中心客户端

在你的微服务配置中声明注册中心客户端类型，如 Http或 Zookeeper。应用程序启动时使用 SPI方
式加载并初始化对应注册中心客户端，通过实现 Spring Bean相关的后置处理器接口，在其中获取需
要进行注册的服务接口信息，将获取的信息放入 Disruptor中。
注册中心客户端从 Disruptor中读取数据，并将接口信息注册到 shenyu-admin，Disruptor在其
中起数据与操作解耦的作用，利于扩展。

7.3. 客户端接入原理 14

Apache ShenYu document

注册中心服务端

7.3. 客户端接入原理 15

Apache ShenYu document

在 shenyu-admin配置中声明注册中心服务端类型，如 Http或 Zookeeper。当 shenyu-admin
启动时，读取配置类型，加载并初始化对应的注册中心服务端，注册中心服务端收到 shenyu-client
注册的接口信息后，将其放入 Disruptor中，然后会触发注册处理逻辑，将服务接口信息更新并发布
同步事件。
Disruptor在其中起到数据与操作解耦，利于扩展。如果注册请求过多，导致注册异常，也有数据缓冲
作用。

Http注册原理

Http服务注册原理较为简单，在 shenyu-client启动后，会调用 shenyu-admin的相关服务注册
接口，上传数据进行注册。
shenyu-admin收到请求后进行数据更新和数据同步事件发布，将接口信息同步到 Apache ShenYu
网关。

Zookeeper注册原理

Zookeeper存储结构如下：

shenyu
├──regsiter
├ ├──metadata
├ ├ ├──${rpcType}
├ ├ ├ ├────${contextPath}
├ ├ ├ ├──${ruleName} : save metadata data of

MetaDataRegisterDTO
├ ├──uri
├ ├ ├──${rpcType}
├ ├ ├ ├────${contextPath}
├ ├ ├ ├──${ip:prot} : save uri data of URIRegisterDTO
├ ├ ├ ├──${ip:prot}

shenyu-client启动时，将服务接口信息（MetaDataRegisterDTO/URIRegisterDTO）写到如上
的 zookeeper节点中。
shenyu-admin使用 Zookeeper的 Watch机制，对数据的更新和删除等事件进行监听，数据变更后
触发对应的注册处理逻辑。在收到 MetaDataRegisterDTO节点变更后，触发 selector和 rule的
数据变更和数据同步事件发布。收到 URIRegisterDTO节点变更后，触发 selector的 upstream
的更新和数据同步事件发布。

7.3. 客户端接入原理 16

Apache ShenYu document

7.3.2 Etcd注册原理

Etcd的键值存储结构如下：

shenyu
├──regsiter
├ ├──metadata
├ ├ ├──${rpcType}
├ ├ ├ ├────${contextPath}
├ ├ ├ ├──${ruleName} : save metadata data of

MetaDataRegisterDTO
├ ├──uri
├ ├ ├──${rpcType}
├ ├ ├ ├────${contextPath}
├ ├ ├ ├──${ip:prot} : save uri data of URIRegisterDTO
├ ├ ├ ├──${ip:prot}

shenyu-client 启动时，将服务接口信息（MetaDataRegisterDTO/URIRegisterDTO）以
Ephemeral方式写到如上的 Etcd节点中。
shenyu-admin使用 Etcd的 Watch机制，对数据的更新和删除等事件进行监听，数据变更后触发对
应的注册处理逻辑。在收到 MetaDataRegisterDTO节点变更后，触发 selector和 rule的数据
变更和数据同步事件发布。收到 URIRegisterDTO节点变更后，触发 selector的 upstream的更
新和数据同步事件发布。

7.3.3 Consul注册原理

Consul 的 Metadata 和 URI 分两部分存储，URIRegisterDTO 随着服务注册记录在服务的
metadata里，服务下线时随着服务节点一起消失。
Consul的 MetaDataRegisterDTO存在 Key/Value里，键值存储结构如下：

shenyu
├──regsiter
├ ├──metadata
├ ├ ├──${rpcType}
├ ├ ├ ├────${contextPath}
├ ├ ├ ├──${ruleName} : save metadata data of

MetaDataRegisterDTO

shenyu-client启动时，将服务接口信息（MetaDataRegisterDTO/URIRegisterDTO）分别放在
ServiceInstance的 Metadata（URIRegisterDTO）和 KeyValue（MetaDataRegisterDTO），
按照上述方式进行存储。
shenyu-admin通过监听 Catalog和 KeyValue的 index的变化，来感知数据的更新和删除，数
据变更后触发对应的注册处理逻辑。在收到 MetaDataRegisterDTO 节点变更后，触发 selector
和 rule的数据变更和数据同步事件发布。收到 URIRegisterDTO节点变更后，触发 selector的
upstream的更新和数据同步事件发布。

7.3. 客户端接入原理 17

Apache ShenYu document

7.3.4 Nacos注册原理

Nacos注册分为两部分：URI和 Metadata。URI使用实例注册方式，在服务异常的情况下，相关 URI
数据节点会自动进行删除，并发送事件到订阅端，订阅端进行相关的下线处理。Metadata使用配置注
册方式，没有相关上下线操作，当有 URI实例注册时，会相应的发布 Metadata配置，订阅端监听数
据变化，进行更新处理。
URI实例注册命令规则如下：

shenyu.register.service.${rpcType}

初始监听所有的 RpcType节点，其下的 ${contextPath}实例会对应注册到其下，根据 IP和 Port
进行区分，并携带其对应的 contextPath信息。URI实例上下线之后，触发 selector的 upstream
的更新和数据同步事件发布。
URI实例上线时，会发布对应的 Metadata数据，其节点名称命令规则如下：

shenyu.register.service.${rpcType}.${contextPath}

订阅端会对所有的 Metadata配置继续监听，当初次订阅和配置更新后，触发 selector和 rule的
数据变更和数据同步事件发布。

SPI扩展

SPI名称 详细说明
ShenyuClientRegisterRepository ShenYu网关客户端接入注册服务资源

已知实现类 详细说明
HttpClientRegisterRepository 基于Http请求的实现
ZookeeperClientRegisterRepository 基于 Zookeeper注册的实现
EtcdClientRegisterRepository 基于 Etcd注册的实现
ConsulClientRegisterRepository 基于 Consul注册的实现
NacosClientRegisterRepository 基于 Nacos注册的实现

SPI名称 详细说明
ShenyuServerRegisterRepository ShenYu网关客户端注册的后台服务资源

已知实现类 详细说明
ShenyuHttpRegistryController 使用Http服务接口来处理客户端注册请求
ZookeeperServerRegisterRepository 使用 Zookeeper来处理客户端注册节点
EtcdServerRegisterRepository 使用 Etcd来处理客户端注册节点
ConsulServerRegisterRepository 使用 Consul来处理客户端注册节点
NacosServerRegisterRepository 使用 Nacos来处理客户端注册节点

7.3. 客户端接入原理 18

Apache ShenYu document

7.4 流量控制

Apache ShenYu 网关通过插件、选择器和规则完成流量控制。相关数据结构可以参考之前的 ShenYu
Admin数据结构。

7.4.1 插件

• 在 shenyu-admin后台，每个插件都用 handle（json格式）字段来表示不同的处理，而插件
处理是就是用来管理编辑 json里面的自定义处理字段。

• 该功能主要是用来支持插件处理模板化配置的。

7.4.2 选择器和规则

选择器和规则是 Apache ShenYu网关中最灵魂的东西。掌握好它，你可以对任何流量进行管理。
一个插件有多个选择器，一个选择器对应多种规则。选择器相当于是对流量的一级筛选，规则就是最终
的筛选。对一个插件而言，我们希望根据我们的配置，达到满足条件的流量，插件才会被执行。选择器和
规则就是为了让流量在满足特定的条件下，才去执行我们想要的，这种规则首先要明白。
插件、选择器和规则执行逻辑如下，当流量进入到 Apache ShenYu网关之后，会先判断是否有对应的
插件，该插件是否开启；然后判断流量是否匹配该插件的选择器；然后再判断流量是否匹配该选择器的规
则。如果请求流量能满足匹配条件才会执行该插件，否则插件不会被执行，处理下一个。Apache ShenYu
网关就是这样通过层层筛选完成流量控制。

7.4.3 流量筛选

流量筛选，是选择器和规则的灵魂，对应为选择器与规则里面的匹配条件 (conditions)，根据不同的流量
筛选规则，我们可以处理各种复杂的场景。流量筛选可以从 Header, URI, Query, Cookie等等Http请
求获取数据，
然后可以采用 Match，=，SpEL，Regex，Groovy等匹配方式，匹配出你所预想的数据。多组匹配添加
可以使用 And/Or的匹配策略。
具体的介绍与使用请看: 选择器与规则管理

7.5 SPI

SPI全称为 Service Provider Interface,是 JDK内置的一种服务提供发现功能,一种动态替换发
现的机制。
shenyu‐spi是 Apache ShenYu网关自定义的 SPI扩展实现，设计和实现原理参考了 Dubbo的 SPI
扩展实现。

7.4. 流量控制 19

https://github.com/apache/incubator-shenyu/tree/master/shenyu-spi
https://dubbo.apache.org/zh/docs/v2.7/dev/impls/
https://dubbo.apache.org/zh/docs/v2.7/dev/impls/

Apache ShenYu document

7.5.1 注册中心扩展

通过哪种方式实现服务的注册，当前支持 Consul、Etcd、Http、Nacos 和 Zookeeper。注
册中心的扩展包括客户端和服务端，接口分别为 ShenyuServerRegisterRepository 和
ShenyuClientRegisterRepository。

7.5.2 监控中心扩展

负责服务的监控，通过 SPI加载具体实现，当前支持 Prometheus，服务接口是MetricsBootService
。

7.5.3 负载均衡扩展

从多个服务提供方中选择一个进行调用，当前支持的算法有 Hash、Random和 RoundRobin，扩展接
口是 LoadBalance。

7.5.4 RateLimiter扩展

在 RateLimiter 插 件 中， 使 用 何 种 限 流 算 法， 当 前 支 持 Concurrent、LeakyBucket、
SlidingWindow和 TokenBucket，扩展接口是 RateLimiterAlgorithm。

7.5.5 匹配方式扩展

在添加选择器和规则时，使用哪种匹配方式，当前支持 And、Or，扩展接口是 MatchStrategy。

7.5.6 条件参数扩展

在添加选择器和规则时，使用哪种条件参数，当前支持 URI、RequestMethod、Query、Post、IP、
Host、Cookie和 Header，扩展接口是 ParameterData。

7.5.7 条件策略扩展

在添加选择器和规则时，使用哪种条件策略，当前支持 Match、Contains、Equals、Groovy、Regex、
SpEL、TimerAfter和 TimerBefore，扩展接口是 PredicateJudge。

7.5. SPI 20

8
运维部署

8.1 本地启动

本文介绍本地环境启动 Apache ShenYu网关。

8.1.1 环境准备

• 本地正确安装 JDK1.8+

• 本地正确安装 Git

• 本地正确安装Maven

• 选择一款开发工具，比如 IDEA

8.1.2 下载编译代码

• 下载代码

> git clone https://github.com/apache/incubator-shenyu.git
> cd incubator-shenyu
> mvn clean install -Dmaven.javadoc.skip=true -B -Drat.skip=true -Djacoco.skip=true
-DskipITs -DskipTests

• 使用开发工具启动 org.apache.shenyu.admin.ShenyuAdminBootstrap，访问 http://loca
lhost:9095，默认用户名和密码分别为: admin和 123456。

– 如果使用 h2来存储，设置变量 --spring.profiles.active = h2

– 如果使用 MySQL来存储，修改 application.yaml中的 mysql配置。
• 使用开发工具启动 org.apache.shenyu.bootstrap.ShenyuBootstrapApplication。

21

http://localhost:9095
http://localhost:9095

Apache ShenYu document

8.2 二进制包部署

本文介绍使用二进制包部署 Apache ShenYu网关。

8.2.1 启动 Apache ShenYu Admin

• 下载 apache-shenyu-incubating-2.4.0-admin-bin.tar.gz

• 解压缩 apache-shenyu-incubating-2.4.0-admin-bin.tar.gz。进入 bin目录。
• 使用 h2来存储后台数据：

> windows: start.bat --spring.profiles.active = h2

> linux: ./start.sh --spring.profiles.active = h2

• 使用 MySQL来存储后台数据，进入 /conf目录，修改 application.yaml中 mysql的配置。

> windows: start.bat

> linux: ./start.sh

8.2.2 启动 Apache ShenYu Bootstrap

• 下载 apache-shenyu-incubating-2.4.0-bootstrap-bin.tar.gz

• 解压缩 apache-shenyu-incubating-2.4.0-bootstrap-bin.tar.gz。进入 bin目录。

> windwos : start.bat

> linux : ./start.sh

8.3 docker部署

本文介绍使用 docker来部署 Apache ShenYu网关。

8.3.1 启动 Apache ShenYu Admin

> docker pull apache/shenyu-admin
> docker network create shenyu

• 使用 h2来存储后台数据：

> docker run -d -p 9095:9095 --net shenyu apache/shenyu-admin

8.2. 二进制包部署 22

Apache ShenYu document

• 使用 MySQL来存储后台数据,将 mysql-connector.jar拷贝到 /${your_work_dir}/ext‐lib：

docker run -v /${your_work_dir}/ext-lib:/opt/shenyu-admin/ext-lib -e "SPRING_
PROFILES_ACTIVE=mysql" -e "spring.datasource.url=jdbc:mysql://${your_ip_port}/
shenyu?useUnicode=true&characterEncoding=utf-8&useSSL=false" -e "spring.datasource.
user=${your_username}" -e "spring.datasource.password=${your_password}" -d -p
9095:9095 --net shenyu apache/shenyu-admin

另外一种方式把 application.yml配置放到 ${your_work_dir}/conf，然后执行以下语句：

docker run -v ${your_work_dir}/conf:/opt/shenyu-admin/conf/ -v /${your_work_dir}/
ext-lib:/opt/shenyu-admin/ext-lib -d -p 9095:9095 --net shenyu apache/shenyu-admin

8.3.2 启动 Apache ShenYu Bootstrap

> docker network create shenyu
> docker pull apache/shenyu-bootstrap
> docker run -d -p 9195:9195 --net shenyu apache/shenyu-bootstrap

8.4 k8s部署

本文介绍使用 k8s来部署 Apache ShenYu网关。
目录
一. 使用 h2 作为数据库 1. 创建 nameSpace 和 configMap 2. 部署 shenyu‐admin 3. 部署
shenyu‐bootstrap

二. 使用mysql作为数据库
和 h2过程类似，需要注意的两个地方
1. 需要加载mysql‐connector.jar，所以需要一个文件存储的地方
2. 需要指定外部mysql数据库配置，通过 endpoint来代理外部mysql数据库
具体流程如下：1. 创建 nameSpace和 configMap 2. 创建 endpoint代理外部mysql 3. 创建
pv存储mysql‐connector.jar 4. 部署 shenyu‐admin 5. 部署 shenyu‐bootstrap

8.4.1 一.使用 h2作为数据库

1.创建 nameSpace和 configMap

• 创建文件 shenyu‐ns.yaml

apiVersion: v1
kind: Namespace
metadata:

8.4. k8s部署 23

Apache ShenYu document

name: shenyu
labels:
name: shenyu

apiVersion: v1
kind: ConfigMap
metadata:

name: shenyu-cm
namespace: shenyu

data:
application-local.yml: |
server:

port: 9195
address: 0.0.0.0

spring:
main:

allow-bean-definition-overriding: true
application:

name: shenyu-bootstrap
management:

health:
defaults:
enabled: false

shenyu:
local:

enabled: true
file:

enabled: true
cross:

enabled: true
dubbo:

parameter: multi
sync:

websocket:
urls: ws://shenyu-admin-svc.shenyu.svc.cluster.local:9095/websocket

exclude:
enabled: false
paths:
- /favicon.ico

extPlugin:
enabled: true
threads: 1
scheduleTime: 300
scheduleDelay: 30

scheduler:
enabled: false
type: fixed
threads: 16

8.4. k8s部署 24

Apache ShenYu document

logging:
level:

root: info
org.springframework.boot: info
org.apache.ibatis: info
org.apache.shenyu.bonuspoint: info
org.apache.shenyu.lottery: info
org.apache.shenyu: info

• 执行 kubectl apply -f shenyu-ns.yaml

2.部署 shenyu-admin

• 创建文件 shenyu‐admin.yaml

示例使用 nodeport 方式暴露端口
apiVersion: v1
kind: Service
metadata:

namespace: shenyu
name: shenyu-admin-svc

spec:
selector:
app: shenyu-admin

type: NodePort
ports:
- protocol: TCP
port: 9095
targetPort: 9095
nodePort: 31095

shenyu-admin
apiVersion: apps/v1
kind: Deployment
metadata:

namespace: shenyu
name: shenyu-admin

spec:
selector:
matchLabels:

app: shenyu-admin
replicas: 1
template:
metadata:

labels:
app: shenyu-admin

spec:
containers:

8.4. k8s部署 25

Apache ShenYu document

- name: shenyu-admin
image: apache/shenyu-admin:latest
imagePullPolicy: Always
ports:
- containerPort: 9095
env:
- name: 'TZ'
value: 'Asia/Beijing'

• 执行 kubectl apply -f shenyu-ns.yaml

3.部署 shenyu-bootstrap

• 创建文件 shenyu‐bootstrap.yaml

示例使用 nodeport 方式暴露端口
apiVersion: v1
kind: Service
metadata:

namespace: shenyu
name: shenyu-bootstrap-svc

spec:
selector:
app: shenyu-bootstrap

type: NodePort
ports:
- protocol: TCP
port: 9195
targetPort: 9195
nodePort: 31195

shenyu-bootstrap
apiVersion: apps/v1
kind: Deployment
metadata:

namespace: shenyu
name: shenyu-bootstrap

spec:
selector:
matchLabels:

app: shenyu-bootstrap
replicas: 1
template:
metadata:

labels:
app: shenyu-bootstrap

spec:
volumes:

8.4. k8s部署 26

Apache ShenYu document

- name: shenyu-bootstrap-config
configMap:
name: shenyu-cm
items:
- key: application-local.yml
path: application-local.yml

containers:
- name: shenyu-bootstrap

image: apache/shenyu-bootstrap:latest
ports:
- containerPort: 9195
env:
- name: TZ
value: Asia/Beijing

volumeMounts:
- name: shenyu-bootstrap-config
mountPath: /opt/shenyu-bootstrap/conf/application-local.yml
subPath: application-local.yml

• 执行 kubectl apply -f shenyu-bootstrap.yaml

8.4.2 二.使用mysql作为数据库

1.创建 nameSpace和 configMap

• 创建文件 shenyu‐ns.yaml

apiVersion: v1
kind: Namespace
metadata:

name: shenyu
labels:
name: shenyu

apiVersion: v1
kind: ConfigMap
metadata:

name: shenyu-cm
namespace: shenyu

data:
application-local.yml: |
server:

port: 9195
address: 0.0.0.0

spring:
main:

allow-bean-definition-overriding: true

8.4. k8s部署 27

Apache ShenYu document

application:
name: shenyu-bootstrap

management:
health:

defaults:
enabled: false

shenyu:
local:

enabled: true
file:

enabled: true
cross:

enabled: true
dubbo:

parameter: multi
sync:

websocket:
urls: ws://shenyu-admin-svc.shenyu.svc.cluster.local:9095/websocket

exclude:
enabled: false
paths:
- /favicon.ico

extPlugin:
enabled: true
threads: 1
scheduleTime: 300
scheduleDelay: 30

scheduler:
enabled: false
type: fixed
threads: 16

logging:
level:

root: info
org.springframework.boot: info
org.apache.ibatis: info
org.apache.shenyu.bonuspoint: info
org.apache.shenyu.lottery: info
org.apache.shenyu: info

application-mysql.yml: |
spring.datasource.url: jdbc:mysql://mysql.shenyu.svc.cluster.local:3306/shenyu?

useUnicode=true&characterEncoding=utf-8&useSSL=false
spring.datasource.user: {your_mysql_user}
spring.datasource.password: {your_mysql_password}

• 执行 kubectl apply -f shenyu-ns.yaml

8.4. k8s部署 28

Apache ShenYu document

2.创建 endpoint代理外部mysql

• 创建文件 shenyu‐ep.yaml

kind: Service
apiVersion: v1
metadata:

name: mysql
namespace: shenyu

spec:
ports:
- port: 3306
name: mysql
targetPort: {your_mysql_port}

kind: Endpoints
apiVersion: v1
metadata:

name: mysql
namespace: shenyu

subsets:
- addresses:

- ip: {your_mysql_ip}
ports:
- port: {your_mysql_port}
name: mysql

• 执行 kubectl apply -f shenyu-ep.yaml ### 3. 创建 pv存储mysql‐connector.jar

• 创建文件 shenyu‐store.yaml

示例使用 pvc、pv、storageClass 来存储文件
apiVersion: v1
kind: PersistentVolume
metadata:

name: shenyu-pv
spec:

capacity:
storage: 1Gi

volumeMode: Filesystem
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Delete
storageClassName: local-storage
local:
path: /home/shenyu/shenyu-admin/k8s-pv # 指定节点上的目录, 该目录下面需要包含 mysql-

connector.jar
nodeAffinity:
required:

nodeSelectorTerms:

8.4. k8s部署 29

Apache ShenYu document

- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- {your_node_name} # 指定节点

kind: PersistentVolumeClaim
apiVersion: v1
metadata:

name: shenyu-pvc
namespace: shenyu

spec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 1Gi
storageClassName: local-storage

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: local-storage
provisioner: kubernetes.io/no-provisioner
volumeBindingMode: WaitForFirstConsumer

• 执行 kubectl apply -f shenyu-store.yaml

• pv挂载目录下上传 mysql-connector.jar

4.部署 shenyu-admin

• 创建文件 shenyu‐admin.yaml

示例使用 nodeport 方式暴露端口
apiVersion: v1
kind: Service
metadata:

namespace: shenyu
name: shenyu-admin-svc

spec:
selector:
app: shenyu-admin

type: NodePort
ports:
- protocol: TCP
port: 9095
targetPort: 9095

8.4. k8s部署 30

Apache ShenYu document

nodePort: 31095

shenyu-admin
apiVersion: apps/v1
kind: Deployment
metadata:

namespace: shenyu
name: shenyu-admin

spec:
selector:
matchLabels:

app: shenyu-admin
replicas: 1
template:
metadata:

labels:
app: shenyu-admin

spec:
volumes:
- name: mysql-connector-volume

persistentVolumeClaim:
claimName: shenyu-pvc

- name: shenyu-admin-config
configMap:
name: shenyu-cm
items:
- key: application-mysql.yml
path: application-mysql.yml

containers:
- name: shenyu-admin

image: apache/shenyu-admin:latest
imagePullPolicy: Always
ports:
- containerPort: 9095
env:
- name: 'TZ'
value: 'Asia/Beijing'

- name: SPRING_PROFILES_ACTIVE
value: mysql

volumeMounts:
- name: shenyu-admin-config
mountPath: /opt/shenyu-admin/config/application-mysql.yml
subPath: application-mysql.yml

- mountPath: /opt/shenyu-admin/ext-lib
name: mysql-connector-volume

• 执行 kubectl apply -f shenyu-admin.yaml

8.4. k8s部署 31

Apache ShenYu document

3.部署 shenyu-bootstrap

• 创建文件 shenyu‐bootstrap.yaml

示例使用 nodeport 方式暴露端口
apiVersion: v1
kind: Service
metadata:

namespace: shenyu
name: shenyu-bootstrap-svc

spec:
selector:
app: shenyu-bootstrap

type: NodePort
ports:
- protocol: TCP
port: 9195
targetPort: 9195
nodePort: 31195

shenyu-bootstrap
apiVersion: apps/v1
kind: Deployment
metadata:

namespace: shenyu
name: shenyu-bootstrap

spec:
selector:
matchLabels:

app: shenyu-bootstrap
replicas: 1
template:
metadata:

labels:
app: shenyu-bootstrap

spec:
volumes:
- name: shenyu-bootstrap-config

configMap:
name: shenyu-cm
items:
- key: application-local.yml
path: application-local.yml

containers:
- name: shenyu-bootstrap

image: apache/shenyu-bootstrap:latest
ports:
- containerPort: 9195
env:

8.4. k8s部署 32

Apache ShenYu document

- name: TZ
value: Asia/Beijing

volumeMounts:
- name: shenyu-bootstrap-config
mountPath: /opt/shenyu-bootstrap/conf/application-local.yml
subPath: application-local.yml

• 执行 kubectl apply -f shenyu-bootstrap.yaml

8.5 helm部署

本文介绍使用 helm来部署 Apache ShenYu网关。

8.6 自定义搭建网关

本文介绍如何基于 Apache ShenYu搭建属于你自己的网关。

8.6.1 启动 Apache ShenYu Admin

• docker用户参考 docker部署 Apache ShenYu Admin

• liunx/windows用户参考二进制包部署 Apache ShenYu Admin

8.6.2 搭建自己的网关（推荐）

• 首先新建一个空的 springboot项目，可以参考 shenyu-bootstrap，也可以在 spring官网创
建。

• 引入如下 jar包：

<dependencies>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
<version>2.2.2.RELEASE</version>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
<version>2.2.2.RELEASE</version>

</dependency>
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-gateway</artifactId>
<version>${project.version}</version>

8.5. helm部署 33

https://spring.io/quickstart

Apache ShenYu document

</dependency>
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-websocket</artifactId>
<version>${project.version}</version>

</dependency>
</dependencies>

其中，${project.version}请使用当前最新版本。
• 在你的 application.yaml文件中加上如下配置：

spring:
main:
allow-bean-definition-overriding: true

management:
health:
defaults:

enabled: false
shenyu:

sync:
websocket:

urls: ws://localhost:9095/websocket //设置成你的 shenyu-admin 地址

8.6. 自定义搭建网关 34

9
快速开始

9.1 Http快速开始

本文档演示如何将 Http服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文档的示例
代码。

9.1.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 divide插件设置为开启。在 Apache ShenYu网关
中，Http请求是由 divide插件进行处理。
启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。
引入网关对 Http的代理插件，在网关的 pom.xml文件中增加如下依赖：

<!--if you use http proxy start this-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-divide</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-httpclient</artifactId>
<version>${project.version}</version>

</dependency>

35

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-http
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-http

Apache ShenYu document

9.1.2 运行 shenyu-examples-http项目

下载 shenyu‐examples‐http

运行 org.apache.shenyu.examples.http.ShenyuTestHttpApplicationmain 方法启动项
目。
成功启动会有如下日志：

2021-02-10 00:57:07.561 INFO 3700 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : http client register success: {"appName":"http","context":"/http",
"path":"/http/test/**","pathDesc":"","rpcType":"http","host":"192.168.50.13","port
":8188,"ruleName":"/http/test/**","enabled":true,"registerMetaData":false}
2021-02-10 00:57:07.577 INFO 3700 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : http client register success: {"appName":"http","context":"/http",
"path":"/http/order/save","pathDesc":"Save order","rpcType":"http","host":"192.168.
50.13","port":8188,"ruleName":"/http/order/save","enabled":true,"registerMetaData
":false}
2021-02-10 00:57:07.587 INFO 3700 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : http client register success: {"appName":"http","context":"/http",
"path":"/http/order/path/**/name","pathDesc":"","rpcType":"http","host":"192.168.
50.13","port":8188,"ruleName":"/http/order/path/**/name","enabled":true,
"registerMetaData":false}
2021-02-10 00:57:07.596 INFO 3700 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : http client register success: {"appName":"http","context":"/http",
"path":"/http/order/findById","pathDesc":"Find by id","rpcType":"http","host":"192.
168.50.13","port":8188,"ruleName":"/http/order/findById","enabled":true,
"registerMetaData":false}
2021-02-10 00:57:07.606 INFO 3700 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : http client register success: {"appName":"http","context":"/http",
"path":"/http/order/path/**","pathDesc":"","rpcType":"http","host":"192.168.50.13",
"port":8188,"ruleName":"/http/order/path/**","enabled":true,"registerMetaData
":false}
2021-02-10 00:57:08.023 INFO 3700 --- [main] o.s.b.web.embedded.netty.
NettyWebServer : Netty started on port(s): 8188
2021-02-10 00:57:08.026 INFO 3700 --- [main] o.d.s.e.http.
ShenyuTestHttpApplication : Started ShenyuTestHttpApplication in 2.555 seconds
(JVM running for 3.411)

9.1.3 测试Http请求

shenyu-examples-http项目成功启动之后会自动把加 @ShenyuSpringMvcClient注解的接口方
法注册到网关。
打开插件列表 -> http process -> divide可以看到插件规则配置列表：

9.1. Http快速开始 36

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-http

Apache ShenYu document

下面使用 postman模拟 http的方式来请求你的 http服务：

9.2 Dubbo快速开始

本文档演示如何将 Dubbo服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文档的示例
代码。

9.2.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 dubbo插件设置为开启，并设置你的注册地址，请确
保注册中心在你本地已经开启。

9.2. Dubbo快速开始 37

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-dubbo
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-dubbo

Apache ShenYu document

启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。
如果客户端是 apache dubbo，注册中心使用 zookeeper，请参考如下配置：

<!-- apache shenyu apache dubbo plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-apache-dubbo</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo</artifactId>
<version>2.7.5</version>

</dependency>
<!-- Dubbo zookeeper registry dependency start -->
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>
<version>4.0.1</version>
<exclusions>

<exclusion>
<artifactId>log4j</artifactId>
<groupId>log4j</groupId>

</exclusion>
</exclusions>

9.2. Dubbo快速开始 38

Apache ShenYu document

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>4.0.1</version>

</dependency>
<!-- Dubbo zookeeper registry dependency end -->
<!-- apache shenyu apache dubbo plugin end-->

如果客户端是 alibaba dubbo，注册中心使用 zookeeper，请参考如下配置：

<!-- apache shenyu alibaba dubbo plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-alibaba-dubbo</artifactId>
<version>${project.version}</version>

</dependency>
<dependency>

<groupId>com.alibaba</groupId>
<artifactId>dubbo</artifactId>
<version>${alibaba.dubbo.version}</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>
<version>${curator.version}</version>
<exclusions>

<exclusion>
<artifactId>log4j</artifactId>
<groupId>log4j</groupId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>${curator.version}</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>${curator.version}</version>

</dependency>

9.2. Dubbo快速开始 39

Apache ShenYu document

<!-- apache shenyu alibaba dubbo plugin end-->

9.2.2 运行 shenyu-examples-dubbo项目

下载 shenyu‐examples‐dubbo .

修改 spring-dubbo.xml中的注册地址为你本地（注意区分 dubbo的版本是 apache dubbo还是
alibaba dubbo），如：

<dubbo:registry address="zookeeper://localhost:2181"/>

运行相应的 main 方法启动项目， （注意区分 dubbo 的版本是 apache dubbo 还是 alibaba
dubbo）。
成功启动会有如下日志：

2021-02-06 20:58:01.807 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/insert","pathDesc":"Insert a row of data","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboTestService",
"methodName":"insert","ruleName":"/dubbo/insert","parameterTypes":"org.dromara.
shenyu.examples.dubbo.api.entity.DubboTest","rpcExt":"{\"group\":\"\",\"version\":\
"\",\"loadbalance\":\"random\",\"retries\":2,\"timeout\":10000,\"url\":\"\"}",
"enabled":true}
2021-02-06 20:58:01.821 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/findAll","pathDesc":"Get all data","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboTestService",
"methodName":"findAll","ruleName":"/dubbo/findAll","parameterTypes":"","rpcExt":"{\
"group\":\"\",\"version\":\"\",\"loadbalance\":\"random\",\"retries\":2,\"timeout\
":10000,\"url\":\"\"}","enabled":true}
2021-02-06 20:58:01.833 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/findById","pathDesc":"Query by Id","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboTestService",
"methodName":"findById","ruleName":"/dubbo/findById","parameterTypes":"java.lang.
String","rpcExt":"{\"group\":\"\",\"version\":\"\",\"loadbalance\":\"random\",\
"retries\":2,\"timeout\":10000,\"url\":\"\"}","enabled":true}
2021-02-06 20:58:01.844 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/findByListId","pathDesc":"","rpcType":"dubbo","serviceName":
"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService","methodName
":"findByListId","ruleName":"/dubbo/findByListId","parameterTypes":"java.util.List
","rpcExt":"{\"group\":\"\",\"version\":\"\",\"loadbalance\":\"random\",\"retries\
":2,\"timeout\":10000,\"url\":\"\"}","enabled":true}
2021-02-06 20:58:01.855 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/findByIdsAndName","pathDesc":"","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService
","methodName":"findByIdsAndName","ruleName":"/dubbo/findByIdsAndName",
"parameterTypes":"java.util.List,java.lang.String","rpcExt":"{\"group\":\"\",\
"version\":\"\",\"loadbalance\":\"random\",\"retries\":2,\"timeout\":10000,\"url\
":\"\"}","enabled":true}

9.2. Dubbo快速开始 40

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-dubbo

Apache ShenYu document

2021-02-06 20:58:01.866 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/batchSave","pathDesc":"","rpcType":"dubbo","serviceName":
"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService","methodName
":"batchSave","ruleName":"/dubbo/batchSave","parameterTypes":"java.util.List",
"rpcExt":"{\"group\":\"\",\"version\":\"\",\"loadbalance\":\"random\",\"retries\
":2,\"timeout\":10000,\"url\":\"\"}","enabled":true}
2021-02-06 20:58:01.876 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/findByArrayIdsAndName","pathDesc":"","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService
","methodName":"findByArrayIdsAndName","ruleName":"/dubbo/findByArrayIdsAndName",
"parameterTypes":"[Ljava.lang.Integer;,java.lang.String","rpcExt":"{\"group\":\"\",
\"version\":\"\",\"loadbalance\":\"random\",\"retries\":2,\"timeout\":10000,\"url\
":\"\"}","enabled":true}
2021-02-06 20:58:01.889 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/saveComplexBeanTestAndName","pathDesc":"","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService
","methodName":"saveComplexBeanTestAndName","ruleName":"/dubbo/
saveComplexBeanTestAndName","parameterTypes":"org.dromara.shenyu.examples.dubbo.
api.entity.ComplexBeanTest,java.lang.String","rpcExt":"{\"group\":\"\",\"version\
":\"\",\"loadbalance\":\"random\",\"retries\":2,\"timeout\":10000,\"url\":\"\"}",
"enabled":true}
2021-02-06 20:58:01.901 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/batchSaveAndNameAndId","pathDesc":"","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService
","methodName":"batchSaveAndNameAndId","ruleName":"/dubbo/batchSaveAndNameAndId",
"parameterTypes":"java.util.List,java.lang.String,java.lang.String","rpcExt":"{\
"group\":\"\",\"version\":\"\",\"loadbalance\":\"random\",\"retries\":2,\"timeout\
":10000,\"url\":\"\"}","enabled":true}
2021-02-06 20:58:01.911 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/saveComplexBeanTest","pathDesc":"","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService
","methodName":"saveComplexBeanTest","ruleName":"/dubbo/saveComplexBeanTest",
"parameterTypes":"org.dromara.shenyu.examples.dubbo.api.entity.ComplexBeanTest",
"rpcExt":"{\"group\":\"\",\"version\":\"\",\"loadbalance\":\"random\",\"retries\
":2,\"timeout\":10000,\"url\":\"\"}","enabled":true}
2021-02-06 20:58:01.922 INFO 3724 --- [pool-2-thread-1] o.d.s.client.common.utils.
RegisterUtils : dubbo client register success: {"appName":"dubbo","contextPath":"/
dubbo","path":"/dubbo/findByStringArray","pathDesc":"","rpcType":"dubbo",
"serviceName":"org.dromara.shenyu.examples.dubbo.api.service.DubboMultiParamService
","methodName":"findByStringArray","ruleName":"/dubbo/findByStringArray",
"parameterTypes":"[Ljava.lang.String;","rpcExt":"{\"group\":\"\",\"version\":\"\",\
"loadbalance\":\"random\",\"retries\":2,\"timeout\":10000,\"url\":\"\"}","enabled
":true}

9.2. Dubbo快速开始 41

Apache ShenYu document

9.2.3 测试

shenyu-examples-dubbo项目成功启动之后会自动把加 @ShenyuDubboClient注解的接口方法注
册到网关。
打开插件列表 -> rpc proxy -> dubbo可以看到插件规则配置列表：

下面使用 postman模拟 http的方式来请求你的 dubbo服务：

复杂多参数示例：对应接口实现类为 org.apache.shenyu.examples.alibaba.dubbo.
service.impl.DubboMultiParamServiceImpl#batchSaveAndNameAndId

@Override
@ShenyuDubboClient(path = "/batchSaveAndNameAndId")
public DubboTest batchSaveAndNameAndId(List<DubboTest> dubboTestList, String id,
String name) {

DubboTest test = new DubboTest();
test.setId(id);
test.setName("hello world shenyu alibaba dubbo param batchSaveAndNameAndId :" +

name + ":" + dubboTestList.stream().map(DubboTest::getName).collect(Collectors.
joining("-")));

return test;
}

9.2. Dubbo快速开始 42

Apache ShenYu document

当你的参数不匹配时会报如下异常：

2021-02-07 22:24:04.015 ERROR 14860 --- [:20888-thread-3] o.d.shenyu.web.handler.
GlobalErrorHandler : [e47b2a2a] Resolved [ShenyuException: org.apache.dubbo.
remoting.RemotingException: java.lang.IllegalArgumentException: args.length !=
types.length
java.lang.IllegalArgumentException: args.length != types.length

at org.apache.dubbo.common.utils.PojoUtils.realize(PojoUtils.java:91)
at org.apache.dubbo.rpc.filter.GenericFilter.invoke(GenericFilter.java:82)
at org.apache.dubbo.rpc.protocol.ProtocolFilterWrapper$1.

invoke(ProtocolFilterWrapper.java:81)
at org.apache.dubbo.rpc.filter.ClassLoaderFilter.invoke(ClassLoaderFilter.

java:38)
at org.apache.dubbo.rpc.protocol.ProtocolFilterWrapper$1.

invoke(ProtocolFilterWrapper.java:81)
at org.apache.dubbo.rpc.filter.EchoFilter.invoke(EchoFilter.java:41)
at org.apache.dubbo.rpc.protocol.ProtocolFilterWrapper$1.

invoke(ProtocolFilterWrapper.java:81)
at org.apache.dubbo.rpc.protocol.dubbo.DubboProtocol$1.reply(DubboProtocol.

java:150)
at org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeHandler.

handleRequest(HeaderExchangeHandler.java:100)
at org.apache.dubbo.remoting.exchange.support.header.HeaderExchangeHandler.

received(HeaderExchangeHandler.java:175)
at org.apache.dubbo.remoting.transport.DecodeHandler.received(DecodeHandler.

java:51)
at org.apache.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.

run(ChannelEventRunnable.java:57)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

java:624)

9.2. Dubbo快速开始 43

Apache ShenYu document

at java.lang.Thread.run(Thread.java:748)
] for HTTP POST /dubbo/batchSaveAndNameAndId

9.3 Spring Cloud快速开始

本文档演示如何将 Spring Cloud服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文
档的示例代码。

9.3.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 springCloud插件设置为开启。
启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。
引入网关对 Spring Cloud的代理插件，并添加相关注册中心依赖：

<!-- apache shenyu springCloud plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-springcloud</

artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-commons</artifactId>
<version>2.2.0.RELEASE</version>

</dependency>
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-ribbon</artifactId>
<version>2.2.0.RELEASE</version>

</dependency>

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-httpclient</

artifactId>
<version>${project.version}</version>

</dependency>

9.3. Spring Cloud快速开始 44

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-springcloud

Apache ShenYu document

<!-- springCloud if you config register center is eureka please dependency
end-->

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</

artifactId>
<version>2.2.0.RELEASE</version>

</dependency>
<!-- apache shenyu springCloud plugin end-->

eureka配置信息如下：

eureka:
client:
serviceUrl:

defaultZone: http://localhost:8761/eureka/
instance:
prefer-ip-address: true

启动 shenyu-bootstrap项目。

9.3.2 运行 shenyu-examples-springcloud

示例项目中我们使用 eureka作为 Spring Cloud的注册中心。你可以使用本地的 eureka，也可以
使用示例中提供的应用。
下载 shenyu‐examples‐eureka、shenyu‐examples‐springcloud .

启 动 eureka 服 务， 运 行 org.apache.shenyu.examples.eureka.
EurekaServerApplicationmain方法启动项目。
启 动 spring cloud 服 务， 运 行 org.apache.shenyu.examples.springcloud.
ShenyuTestSpringCloudApplicationmain方法启动项目。
成功启动会有如下日志：

2021-02-10 14:03:51.301 INFO 2860 --- [main] o.s.s.concurrent.
ThreadPoolTaskExecutor : Initializing ExecutorService 'applicationTaskExecutor'
2021-02-10 14:03:51.669 INFO 2860 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : springCloud client register success: {"appName":"springCloud-test
","context":"/springcloud","path":"/springcloud/order/save","pathDesc":"","rpcType
":"springCloud","ruleName":"/springcloud/order/save","enabled":true}
2021-02-10 14:03:51.676 INFO 2860 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : springCloud client register success: {"appName":"springCloud-test
","context":"/springcloud","path":"/springcloud/order/path/**","pathDesc":"",
"rpcType":"springCloud","ruleName":"/springcloud/order/path/**","enabled":true}
2021-02-10 14:03:51.682 INFO 2860 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : springCloud client register success: {"appName":"springCloud-test
","context":"/springcloud","path":"/springcloud/order/findById","pathDesc":"",
"rpcType":"springCloud","ruleName":"/springcloud/order/findById","enabled":true}

9.3. Spring Cloud快速开始 45

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-eureka
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-springcloud

Apache ShenYu document

2021-02-10 14:03:51.688 INFO 2860 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : springCloud client register success: {"appName":"springCloud-test
","context":"/springcloud","path":"/springcloud/order/path/**/name","pathDesc":"",
"rpcType":"springCloud","ruleName":"/springcloud/order/path/**/name","enabled
":true}
2021-02-10 14:03:51.692 INFO 2860 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : springCloud client register success: {"appName":"springCloud-test
","context":"/springcloud","path":"/springcloud/test/**","pathDesc":"","rpcType":
"springCloud","ruleName":"/springcloud/test/**","enabled":true}
2021-02-10 14:03:52.806 WARN 2860 --- [main]
ockingLoadBalancerClientRibbonWarnLogger : You already have
RibbonLoadBalancerClient on your classpath. It will be used by default. As Spring
Cloud Ribbon is in maintenance mode. We recommend switching to
BlockingLoadBalancerClient instead. In order to use it, set the value of `spring.
cloud.loadbalancer.ribbon.enabled` to `false` or remove spring-cloud-starter-
netflix-ribbon from your project.
2021-02-10 14:03:52.848 WARN 2860 --- [main] iguration
$LoadBalancerCaffeineWarnLogger : Spring Cloud LoadBalancer is currently working
with default default cache. You can switch to using Caffeine cache, by adding it to
the classpath.
2021-02-10 14:03:52.921 INFO 2860 --- [main] o.s.c.n.eureka.
InstanceInfoFactory : Setting initial instance status as: STARTING
2021-02-10 14:03:52.949 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Initializing Eureka in region us-east-1
2021-02-10 14:03:53.006 INFO 2860 --- [main] c.n.d.provider.
DiscoveryJerseyProvider : Using JSON encoding codec LegacyJacksonJson
2021-02-10 14:03:53.006 INFO 2860 --- [main] c.n.d.provider.
DiscoveryJerseyProvider : Using JSON decoding codec LegacyJacksonJson
2021-02-10 14:03:53.110 INFO 2860 --- [main] c.n.d.provider.
DiscoveryJerseyProvider : Using XML encoding codec XStreamXml
2021-02-10 14:03:53.110 INFO 2860 --- [main] c.n.d.provider.
DiscoveryJerseyProvider : Using XML decoding codec XStreamXml
2021-02-10 14:03:53.263 INFO 2860 --- [main] c.n.d.s.r.aws.
ConfigClusterResolver : Resolving eureka endpoints via configuration
2021-02-10 14:03:53.546 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Disable delta property : false
2021-02-10 14:03:53.546 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Single vip registry refresh property : null
2021-02-10 14:03:53.547 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Force full registry fetch : false
2021-02-10 14:03:53.547 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Application is null : false
2021-02-10 14:03:53.547 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Registered Applications size is zero : true
2021-02-10 14:03:53.547 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Application version is -1: true
2021-02-10 14:03:53.547 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Getting all instance registry info from the eureka server

9.3. Spring Cloud快速开始 46

Apache ShenYu document

2021-02-10 14:03:53.754 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : The response status is 200
2021-02-10 14:03:53.756 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Starting heartbeat executor: renew interval is: 30
2021-02-10 14:03:53.758 INFO 2860 --- [main] c.n.discovery.
InstanceInfoReplicator : InstanceInfoReplicator onDemand update allowed rate
per min is 4
2021-02-10 14:03:53.761 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Discovery Client initialized at timestamp 1612937033760 with
initial instances count: 0
2021-02-10 14:03:53.762 INFO 2860 --- [main] o.s.c.n.e.s.
EurekaServiceRegistry : Registering application SPRINGCLOUD-TEST with eureka
with status UP
2021-02-10 14:03:53.763 INFO 2860 --- [main] com.netflix.discovery.
DiscoveryClient : Saw local status change event StatusChangeEvent
[timestamp=1612937033763, current=UP, previous=STARTING]
2021-02-10 14:03:53.765 INFO 2860 --- [nfoReplicator-0] com.netflix.discovery.
DiscoveryClient : DiscoveryClient_SPRINGCLOUD-TEST/host.docker.
internal:springCloud-test:8884: registering service...
2021-02-10 14:03:53.805 INFO 2860 --- [main] o.s.b.w.embedded.tomcat.
TomcatWebServer : Tomcat started on port(s): 8884 (http) with context path ''
2021-02-10 14:03:53.807 INFO 2860 --- [main] .s.c.n.e.s.
EurekaAutoServiceRegistration : Updating port to 8884
2021-02-10 14:03:53.837 INFO 2860 --- [nfoReplicator-0] com.netflix.discovery.
DiscoveryClient : DiscoveryClient_SPRINGCLOUD-TEST/host.docker.
internal:springCloud-test:8884 - registration status: 204
2021-02-10 14:03:54.231 INFO 2860 --- [main] o.d.s.e.s.
ShenyuTestSpringCloudApplication : Started ShenyuTestSpringCloudApplication in 6.
338 seconds (JVM running for 7.361)

9.3.3 测试Http请求

shenyu-examples-springcloud项目成功启动之后会自动把加 @ShenyuSpringCloudClient注
解的接口方法注册到网关。
打开插件列表 -> rpc proxy -> springCloud可以看到插件规则配置列表：

下面使用 postman模拟 http的方式来请求你的 SpringCloud服务：

9.3. Spring Cloud快速开始 47

Apache ShenYu document

9.4 Sofa快速开始

本文档演示如何将 Sofa服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文档的示例
代码。

9.4.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 sofa插件设置为开启，并设置你的注册地址，请确保
注册中心在你本地已经开启。
启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。
如果客户端是 sofa，注册中心使用 zookeeper，请参考如下配置：

<!-- apache shenyu sofa plugin start-->
<dependency>

<groupId>com.alipay.sofa</groupId>
<artifactId>sofa-rpc-all</artifactId>
<version>5.7.6</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>4.0.1</version>

</dependency>

9.4. Sofa快速开始 48

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-sofa
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-sofa

Apache ShenYu document

<dependency>
<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>4.0.1</version>

</dependency>

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-sofa</artifactId>
<version>${project.version}</version>

</dependency>
<!-- apache shenyu sofa plugin end-->

9.4.2 运行 shenyu-examples-sofa项目

下载 shenyu‐examples‐sofa

设置 application.yml的 zk注册地址，如：

com:
alipay:
sofa:

rpc:
registry-address: zookeeper://127.0.0.1:2181

运行 org.apache.shenyu.examples.sofa.service.TestSofaApplicationmain 方法启动
sofa服务。
成功启动会有如下日志：

2021-02-10 02:31:45.599 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/insert","pathDesc":"Insert a row of data","rpcType":"sofa",
"serviceName":"org.dromara.shenyu.examples.sofa.api.service.SofaSingleParamService
","methodName":"insert","ruleName":"/sofa/insert","parameterTypes":"org.dromara.
shenyu.examples.sofa.api.entity.SofaSimpleTypeBean","rpcExt":"{\"loadbalance\":\
"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.605 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/findById","pathDesc":"Find by Id","rpcType":"sofa","serviceName
":"org.dromara.shenyu.examples.sofa.api.service.SofaSingleParamService","methodName
":"findById","ruleName":"/sofa/findById","parameterTypes":"java.lang.String",
"rpcExt":"{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.611 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/findAll","pathDesc":"Get all data","rpcType":"sofa",
"serviceName":"org.dromara.shenyu.examples.sofa.api.service.SofaSingleParamService
","methodName":"findAll","ruleName":"/sofa/findAll","parameterTypes":"","rpcExt":"
{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}

9.4. Sofa快速开始 49

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-sofa

Apache ShenYu document

2021-02-10 02:31:45.616 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/batchSaveNameAndId","pathDesc":"","rpcType":"sofa","serviceName
":"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName
":"batchSaveNameAndId","ruleName":"/sofa/batchSaveNameAndId","parameterTypes":
"java.util.List,java.lang.String,java.lang.String#org.dromara.shenyu.examples.sofa.
api.entity.SofaSimpleTypeBean","rpcExt":"{\"loadbalance\":\"hash\",\"retries\":3,\
"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.621 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/saveComplexBeanAndName","pathDesc":"","rpcType":"sofa",
"serviceName":"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService",
"methodName":"saveComplexBeanAndName","ruleName":"/sofa/saveComplexBeanAndName",
"parameterTypes":"org.dromara.shenyu.examples.sofa.api.entity.SofaComplexTypeBean,
java.lang.String","rpcExt":"{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\":-1}
","enabled":true}
2021-02-10 02:31:45.627 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/findByArrayIdsAndName","pathDesc":"","rpcType":"sofa",
"serviceName":"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService",
"methodName":"findByArrayIdsAndName","ruleName":"/sofa/findByArrayIdsAndName",
"parameterTypes":"[Ljava.lang.Integer;,java.lang.String","rpcExt":"{\"loadbalance\
":\"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.632 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/findByStringArray","pathDesc":"","rpcType":"sofa","serviceName
":"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName
":"findByStringArray","ruleName":"/sofa/findByStringArray","parameterTypes":
"[Ljava.lang.String;","rpcExt":"{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\
":-1}","enabled":true}
2021-02-10 02:31:45.637 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/saveTwoList","pathDesc":"","rpcType":"sofa","serviceName":"org.
dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName":
"saveTwoList","ruleName":"/sofa/saveTwoList","parameterTypes":"java.util.List,java.
util.Map#org.dromara.shenyu.examples.sofa.api.entity.SofaComplexTypeBean","rpcExt":
"{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.642 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/batchSave","pathDesc":"","rpcType":"sofa","serviceName":"org.
dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName":
"batchSave","ruleName":"/sofa/batchSave","parameterTypes":"java.util.List#org.
dromara.shenyu.examples.sofa.api.entity.SofaSimpleTypeBean","rpcExt":"{\
"loadbalance\":\"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.647 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/findByListId","pathDesc":"","rpcType":"sofa","serviceName":
"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName":
"findByListId","ruleName":"/sofa/findByListId","parameterTypes":"java.util.List",
"rpcExt":"{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
9.4. Sofa快速开始 50

Apache ShenYu document

2021-02-10 02:31:45.653 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/saveComplexBean","pathDesc":"","rpcType":"sofa","serviceName":
"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName":
"saveComplexBean","ruleName":"/sofa/saveComplexBean","parameterTypes":"org.dromara.
shenyu.examples.sofa.api.entity.SofaComplexTypeBean","rpcExt":"{\"loadbalance\":\
"hash\",\"retries\":3,\"timeout\":-1}","enabled":true}
2021-02-10 02:31:45.660 INFO 2156 --- [pool-1-thread-1] o.d.s.client.common.utils.
RegisterUtils : sofa client register success: {"appName":"sofa","contextPath":"/
sofa","path":"/sofa/findByIdsAndName","pathDesc":"","rpcType":"sofa","serviceName":
"org.dromara.shenyu.examples.sofa.api.service.SofaMultiParamService","methodName":
"findByIdsAndName","ruleName":"/sofa/findByIdsAndName","parameterTypes":"java.util.
List,java.lang.String","rpcExt":"{\"loadbalance\":\"hash\",\"retries\":3,\"timeout\
":-1}","enabled":true}
2021-02-10 02:31:46.055 INFO 2156 --- [main] o.a.c.f.imps.
CuratorFrameworkImpl : Starting
2021-02-10 02:31:46.059 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:zookeeper.version=3.4.6-1569965, built on
02/20/2014 09:09 GMT
2021-02-10 02:31:46.059 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:host.name=host.docker.internal
2021-02-10 02:31:46.059 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.version=1.8.0_211
2021-02-10 02:31:46.059 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.vendor=Oracle Corporation
2021-02-10 02:31:46.059 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.home=C:\Program Files\Java\jdk1.8.0_
211\jre
2021-02-10 02:31:46.059 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.class.path=C:\Program Files\Java\
jdk1.8.0_211\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\
deploy.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\ext\access-bridge-64.jar;C:\
Program Files\Java\jdk1.8.0_211\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\
jdk1.8.0_211\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\ext\
jaccess.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\ext\jfxrt.jar;C:\Program
Files\Java\jdk1.8.0_211\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_
211\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\ext\sunec.
jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\ext\sunjce_provider.jar;C:\Program
Files\Java\jdk1.8.0_211\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_
211\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\ext\zipfs.
jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\javaws.jar;C:\Program Files\Java\
jdk1.8.0_211\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\jfr.jar;C:\
Program Files\Java\jdk1.8.0_211\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_
211\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\management-agent.
jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\plugin.jar;C:\Program Files\Java\
jdk1.8.0_211\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_211\jre\lib\rt.
jar;D:\X\dlm_github\shenyu\shenyu-examples\shenyu-examples-sofa\shenyu-examples-
sofa-service\target\classes;D:\SOFT\m2\repository\com\alipay\sofa\rpc-sofa-boot-
starter\6.0.4\rpc-sofa-boot-starter-6.0.4.jar;D:\SOFT\m2\repository\com\alipay\
sofa\rpc-sofa-boot-core\6.0.4\rpc-sofa-boot-core-6.0.4.jar;D:\SOFT\m2\repository\
com\alipay\sofa\sofa-rpc-all\5.5.7\sofa-rpc-all-5.5.7.jar;D:\SOFT\m2\repository\
com\alipay\sofa\bolt\1.4.6\bolt-1.4.6.jar;D:\SOFT\m2\repository\org\javassist\
javassist\3.20.0-GA\javassist-3.20.0-GA.jar;D:\SOFT\m2\repository\io\netty\netty-
all\4.1.43.Final\netty-all-4.1.43.Final.jar;D:\SOFT\m2\repository\com\alipay\sofa\
hessian\3.3.6\hessian-3.3.6.jar;D:\SOFT\m2\repository\com\alipay\sofa\tracer-core\
2.1.2\tracer-core-2.1.2.jar;D:\SOFT\m2\repository\io\opentracing\opentracing-api\0.
22.0\opentracing-api-0.22.0.jar;D:\SOFT\m2\repository\io\opentracing\opentracing-
noop\0.22.0\opentracing-noop-0.22.0.jar;D:\SOFT\m2\repository\io\opentracing\
opentracing-mock\0.22.0\opentracing-mock-0.22.0.jar;D:\SOFT\m2\repository\io\
opentracing\opentracing-util\0.22.0\opentracing-util-0.22.0.jar;D:\SOFT\m2\
repository\com\alipay\sofa\lookout\lookout-api\1.4.1\lookout-api-1.4.1.jar;D:\SOFT\
m2\repository\com\alipay\sofa\runtime-sofa-boot-starter\3.1.4\runtime-sofa-boot-
starter-3.1.4.jar;D:\SOFT\m2\repository\org\apache\curator\curator-client\2.9.1\
curator-client-2.9.1.jar;D:\SOFT\m2\repository\org\apache\zookeeper\zookeeper\3.4.
6\zookeeper-3.4.6.jar;D:\SOFT\m2\repository\log4j\log4j\1.2.16\log4j-1.2.16.jar;D:\
SOFT\m2\repository\jline\jline\0.9.94\jline-0.9.94.jar;D:\SOFT\m2\repository\io\
netty\netty\3.7.0.Final\netty-3.7.0.Final.jar;D:\SOFT\m2\repository\com\google\
guava\guava\16.0.1\guava-16.0.1.jar;D:\SOFT\m2\repository\org\apache\curator\
curator-framework\2.9.1\curator-framework-2.9.1.jar;D:\SOFT\m2\repository\org\
apache\curator\curator-recipes\2.9.1\curator-recipes-2.9.1.jar;D:\SOFT\m2\
repository\org\jboss\resteasy\resteasy-jaxrs\3.0.12.Final\resteasy-jaxrs-3.0.12.
Final.jar;D:\SOFT\m2\repository\org\jboss\spec\javax\annotation\jboss-annotations-
api_1.1_spec\1.0.1.Final\jboss-annotations-api_1.1_spec-1.0.1.Final.jar;D:\SOFT\m2\
repository\javax\activation\activation\1.1.1\activation-1.1.1.jar;D:\SOFT\m2\
repository\org\apache\httpcomponents\httpclient\4.5.10\httpclient-4.5.10.jar;D:\
SOFT\m2\repository\org\apache\httpcomponents\httpcore\4.4.12\httpcore-4.4.12.jar;
D:\SOFT\m2\repository\commons-io\commons-io\2.1\commons-io-2.1.jar;D:\SOFT\m2\
repository\net\jcip\jcip-annotations\1.0\jcip-annotations-1.0.jar;D:\SOFT\m2\
repository\org\jboss\resteasy\resteasy-client\3.0.12.Final\resteasy-client-3.0.12.
Final.jar;D:\SOFT\m2\repository\org\jboss\resteasy\resteasy-jackson-provider\3.0.
12.Final\resteasy-jackson-provider-3.0.12.Final.jar;D:\SOFT\m2\repository\org\
codehaus\jackson\jackson-core-asl\1.9.12\jackson-core-asl-1.9.12.jar;D:\SOFT\m2\
repository\org\codehaus\jackson\jackson-mapper-asl\1.9.12\jackson-mapper-asl-1.9.
12.jar;D:\SOFT\m2\repository\org\codehaus\jackson\jackson-jaxrs\1.9.12\jackson-
jaxrs-1.9.12.jar;D:\SOFT\m2\repository\org\codehaus\jackson\jackson-xc\1.9.12\
jackson-xc-1.9.12.jar;D:\SOFT\m2\repository\org\jboss\resteasy\resteasy-netty4\3.0.
12.Final\resteasy-netty4-3.0.12.Final.jar;D:\SOFT\m2\repository\org\jboss\resteasy\
resteasy-validator-provider-11\3.0.12.Final\resteasy-validator-provider-11-3.0.12.
Final.jar;D:\SOFT\m2\repository\com\fasterxml\classmate\1.5.1\classmate-1.5.1.jar;
D:\SOFT\m2\repository\org\jboss\resteasy\jaxrs-api\3.0.12.Final\jaxrs-api-3.0.12.
Final.jar;D:\SOFT\m2\repository\org\jboss\resteasy\resteasy-multipart-provider\3.0.
12.Final\resteasy-multipart-provider-3.0.12.Final.jar;D:\SOFT\m2\repository\org\
jboss\resteasy\resteasy-jaxb-provider\3.0.12.Final\resteasy-jaxb-provider-3.0.12.
Final.jar;D:\SOFT\m2\repository\com\sun\xml\bind\jaxb-impl\2.2.7\jaxb-impl-2.2.7.
jar;D:\SOFT\m2\repository\com\sun\xml\bind\jaxb-core\2.2.7\jaxb-core-2.2.7.jar;D:\
SOFT\m2\repository\javax\xml\bind\jaxb-api\2.3.1\jaxb-api-2.3.1.jar;D:\SOFT\m2\
repository\javax\activation\javax.activation-api\1.2.0\javax.activation-api-1.2.0.
jar;D:\SOFT\m2\repository\com\sun\istack\istack-commons-runtime\2.16\istack-
commons-runtime-2.16.jar;D:\SOFT\m2\repository\com\sun\xml\fastinfoset\FastInfoset\
1.2.12\FastInfoset-1.2.12.jar;D:\SOFT\m2\repository\javax\xml\bind\jsr173_api\1.0\
jsr173_api-1.0.jar;D:\SOFT\m2\repository\javax\mail\mail\1.5.0-b01\mail-1.5.0-b01.
jar;D:\SOFT\m2\repository\org\apache\james\apache-mime4j\0.6\apache-mime4j-0.6.jar;
D:\SOFT\m2\repository\commons-logging\commons-logging\1.1.1\commons-logging-1.1.1.
jar;D:\SOFT\m2\repository\com\alibaba\dubbo\2.4.10\dubbo-2.4.10.jar;D:\SOFT\m2\
repository\org\jboss\netty\netty\3.2.5.Final\netty-3.2.5.Final.jar;D:\SOFT\m2\
repository\com\101tec\zkclient\0.10\zkclient-0.10.jar;D:\SOFT\m2\repository\com\
alibaba\nacos\nacos-api\1.0.0\nacos-api-1.0.0.jar;D:\SOFT\m2\repository\com\
alibaba\fastjson\1.2.47\fastjson-1.2.47.jar;D:\SOFT\m2\repository\org\apache\
commons\commons-lang3\3.9\commons-lang3-3.9.jar;D:\SOFT\m2\repository\com\alibaba\
nacos\nacos-client\1.0.0\nacos-client-1.0.0.jar;D:\SOFT\m2\repository\com\alibaba\
nacos\nacos-common\1.0.0\nacos-common-1.0.0.jar;D:\SOFT\m2\repository\commons-
codec\commons-codec\1.13\commons-codec-1.13.jar;D:\SOFT\m2\repository\com\
fasterxml\jackson\core\jackson-core\2.10.1\jackson-core-2.10.1.jar;D:\SOFT\m2\
repository\com\fasterxml\jackson\core\jackson-databind\2.10.1\jackson-databind-2.
10.1.jar;D:\SOFT\m2\repository\com\fasterxml\jackson\core\jackson-annotations\2.10.
1\jackson-annotations-2.10.1.jar;D:\SOFT\m2\repository\io\prometheus\simpleclient\
0.5.0\simpleclient-0.5.0.jar;D:\SOFT\m2\repository\org\springframework\spring-
beans\5.2.2.RELEASE\spring-beans-5.2.2.RELEASE.jar;D:\SOFT\m2\repository\org\
springframework\spring-core\5.2.2.RELEASE\spring-core-5.2.2.RELEASE.jar;D:\SOFT\m2\
repository\org\springframework\spring-jcl\5.2.2.RELEASE\spring-jcl-5.2.2.RELEASE.
jar;D:\SOFT\m2\repository\com\alipay\sofa\infra-sofa-boot-starter\3.1.4\infra-sofa-
boot-starter-3.1.4.jar;D:\SOFT\m2\repository\com\alipay\sofa\common\log-sofa-boot-
starter\1.0.18\log-sofa-boot-starter-1.0.18.jar;D:\SOFT\m2\repository\org\
springframework\spring-context\5.2.2.RELEASE\spring-context-5.2.2.RELEASE.jar;D:\
SOFT\m2\repository\org\springframework\spring-aop\5.2.2.RELEASE\spring-aop-5.2.2.
RELEASE.jar;D:\SOFT\m2\repository\org\springframework\spring-expression\5.2.2.
RELEASE\spring-expression-5.2.2.RELEASE.jar;D:\SOFT\m2\repository\com\alipay\sofa\
common\sofa-common-tools\1.0.18\sofa-common-tools-1.0.18.jar;D:\SOFT\m2\repository\
org\springframework\boot\spring-boot-starter-validation\2.2.2.RELEASE\spring-boot-
starter-validation-2.2.2.RELEASE.jar;D:\SOFT\m2\repository\jakarta\validation\
jakarta.validation-api\2.0.1\jakarta.validation-api-2.0.1.jar;D:\SOFT\m2\
repository\org\hibernate\validator\hibernate-validator\6.0.18.Final\hibernate-
validator-6.0.18.Final.jar;D:\SOFT\m2\repository\org\jboss\logging\jboss-logging\3.
4.1.Final\jboss-logging-3.4.1.Final.jar;D:\SOFT\m2\repository\org\apache\tomcat\
embed\tomcat-embed-el\9.0.29\tomcat-embed-el-9.0.29.jar;D:\SOFT\m2\repository\org\
springframework\boot\spring-boot-autoconfigure\2.2.2.RELEASE\spring-boot-
autoconfigure-2.2.2.RELEASE.jar;D:\SOFT\m2\repository\org\springframework\boot\
spring-boot\2.2.2.RELEASE\spring-boot-2.2.2.RELEASE.jar;D:\X\dlm_github\shenyu\
shenyu-examples\shenyu-examples-sofa\shenyu-examples-sofa-api\target\classes;D:\
SOFT\m2\repository\org\projectlombok\lombok\1.18.10\lombok-1.18.10.jar;D:\X\dlm_
github\shenyu\shenyu-spring-boot-starter\shenyu-spring-boot-starter-client\shenyu-
spring-boot-starter-client-sofa\target\classes;D:\SOFT\m2\repository\org\
springframework\boot\spring-boot-starter\2.2.2.RELEASE\spring-boot-starter-2.2.2.
RELEASE.jar;D:\SOFT\m2\repository\org\springframework\boot\spring-boot-starter-
logging\2.2.2.RELEASE\spring-boot-starter-logging-2.2.2.RELEASE.jar;D:\SOFT\m2\
repository\ch\qos\logback\logback-classic\1.2.3\logback-classic-1.2.3.jar;D:\SOFT\
m2\repository\ch\qos\logback\logback-core\1.2.3\logback-core-1.2.3.jar;D:\SOFT\m2\
repository\org\apache\logging\log4j\log4j-to-slf4j\2.12.1\log4j-to-slf4j-2.12.1.
jar;D:\SOFT\m2\repository\org\apache\logging\log4j\log4j-api\2.12.1\log4j-api-2.12.
1.jar;D:\SOFT\m2\repository\org\slf4j\jul-to-slf4j\1.7.29\jul-to-slf4j-1.7.29.jar;
D:\SOFT\m2\repository\jakarta\annotation\jakarta.annotation-api\1.3.5\jakarta.
annotation-api-1.3.5.jar;D:\SOFT\m2\repository\org\yaml\snakeyaml\1.25\snakeyaml-1.
25.jar;D:\X\dlm_github\shenyu\shenyu-client\shenyu-client-sofa\target\classes;D:\X\
dlm_github\shenyu\shenyu-client\shenyu-client-common\target\classes;D:\X\dlm_
github\shenyu\shenyu-common\target\classes;D:\SOFT\m2\repository\org\
springframework\boot\spring-boot-starter-json\2.2.2.RELEASE\spring-boot-starter-
json-2.2.2.RELEASE.jar;D:\SOFT\m2\repository\org\springframework\spring-web\5.2.2.
RELEASE\spring-web-5.2.2.RELEASE.jar;D:\SOFT\m2\repository\com\fasterxml\jackson\
datatype\jackson-datatype-jdk8\2.10.1\jackson-datatype-jdk8-2.10.1.jar;D:\SOFT\m2\
repository\com\fasterxml\jackson\datatype\jackson-datatype-jsr310\2.10.1\jackson-
datatype-jsr310-2.10.1.jar;D:\SOFT\m2\repository\com\fasterxml\jackson\module\
jackson-module-parameter-names\2.10.1\jackson-module-parameter-names-2.10.1.jar;D:\
SOFT\m2\repository\com\squareup\okhttp3\okhttp\3.14.4\okhttp-3.14.4.jar;D:\SOFT\m2\
repository\com\squareup\okio\okio\1.17.2\okio-1.17.2.jar;D:\SOFT\m2\repository\com\
google\code\gson\gson\2.8.6\gson-2.8.6.jar;D:\SOFT\m2\repository\org\slf4j\slf4j-
api\1.7.29\slf4j-api-1.7.29.jar;D:\SOFT\m2\repository\org\slf4j\jcl-over-slf4j\1.7.
29\jcl-over-slf4j-1.7.29.jar;C:\Program Files\JetBrains\IntelliJ IDEA 2019.3.3\lib\
idea_rt.jar

9.4. Sofa快速开始 51

Apache ShenYu document

2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.library.path=C:\Program Files\Java\
jdk1.8.0_211\bin;C:\Windows\Sun\Java\bin;C:\Windows\system32;C:\Windows;C:\Program
Files\Common Files\Oracle\Java\javapath;C:\ProgramData\Oracle\Java\javapath;C:\
Program Files (x86)\Common Files\Oracle\Java\javapath;C:\Windows\system32;C:\
Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\
Windows\System32\OpenSSH\;C:\Program Files\Java\jdk1.8.0_211\bin;C:\Program Files\
Java\jdk1.8.0_211\jre\bin;D:\SOFT\apache-maven-3.5.0\bin;C:\Program Files\Go\bin;
C:\Program Files\nodejs\;C:\Program Files\Python\Python38\;C:\Program Files\
OpenSSL-Win64\bin;C:\Program Files\Git\bin;D:\SOFT\protobuf-2.5.0\src;D:\SOFT\zlib-
1.2.8;c:\Program Files (x86)\Microsoft SQL Server\100\Tools\Binn\;c:\Program Files\
Microsoft SQL Server\100\Tools\Binn\;c:\Program Files\Microsoft SQL Server\100\DTS\
Binn\;C:\Program Files\Docker\Docker\resources\bin;C:\ProgramData\DockerDesktop\
version-bin;D:\SOFT\gradle-6.0-all\gradle-6.0\bin;C:\Program Files\mingw-w64\x86_
64-8.1.0-posix-seh-rt_v6-rev0\mingw64\bin;D:\SOFT\hugo_extended_0.55.5_Windows-
64bit;C:\Users\DLM\AppData\Local\Microsoft\WindowsApps;C:\Users\DLM\go\bin;C:\
Users\DLM\AppData\Roaming\npm;;C:\Program Files\Microsoft VS Code\bin;C:\Program
Files\nimbella-cli\bin;.
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.io.tmpdir=C:\Users\DLM\AppData\Local\
Temp\
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:java.compiler=<NA>
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:os.name=Windows 10
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:os.arch=amd64
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:os.version=10.0
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:user.name=DLM
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:user.home=C:\Users\DLM
2021-02-10 02:31:46.060 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Client environment:user.dir=D:\X\dlm_github\shenyu
2021-02-10 02:31:46.061 INFO 2156 --- [main] org.apache.zookeeper.
ZooKeeper : Initiating client connection, connectString=127.0.0.1:21810
sessionTimeout=60000 watcher=org.apache.curator.ConnectionState@3e850122
2021-02-10 02:31:46.069 INFO 2156 --- [27.0.0.1:21810)] org.apache.zookeeper.
ClientCnxn : Opening socket connection to server 127.0.0.1/127.0.0.
1:21810. Will not attempt to authenticate using SASL (unknown error)
2021-02-10 02:31:46.071 INFO 2156 --- [27.0.0.1:21810)] org.apache.zookeeper.
ClientCnxn : Socket connection established to 127.0.0.1/127.0.0.1:21810,
initiating session
2021-02-10 02:31:46.078 INFO 2156 --- [27.0.0.1:21810)] org.apache.zookeeper.
ClientCnxn : Session establishment complete on server 127.0.0.1/127.0.0.
1:21810, sessionid = 0x10005b0d05e0001, negotiated timeout = 40000
2021-02-10 02:31:46.081 INFO 2156 --- [ain-EventThread] o.a.c.f.state.
ConnectionStateManager : State change: CONNECTED

9.4. Sofa快速开始 52

Apache ShenYu document

2021-02-10 02:31:46.093 WARN 2156 --- [main] org.apache.curator.utils.
ZKPaths : The version of ZooKeeper being used doesn't support Container
nodes. CreateMode.PERSISTENT will be used instead.
2021-02-10 02:31:46.141 INFO 2156 --- [main] o.d.s.e.s.service.
TestSofaApplication : Started TestSofaApplication in 3.41 seconds (JVM running
for 4.423)

9.4.3 测试

shenyu-examples-sofa项目成功启动之后会自动把加 @ShenyuSofaClient注解的接口方法注册
到网关。
打开插件列表 -> rpc proxy -> sofa可以看到插件规则配置列表：

下面使用 postman模拟 http的方式来请求你的 sofa服务：

复杂多参数示例：对应接口实现类为 org.apache.shenyu.examples.sofa.service.impl.
SofaMultiParamServiceImpl#batchSaveNameAndId

9.4. Sofa快速开始 53

Apache ShenYu document

@Override
@ShenyuSofaClient(path = "/batchSaveNameAndId")
public SofaSimpleTypeBean batchSaveNameAndId(final List<SofaSimpleTypeBean>
sofaTestList, final String id, final String name) {

SofaSimpleTypeBean simpleTypeBean = new SofaSimpleTypeBean();
simpleTypeBean.setId(id);
simpleTypeBean.setName("hello world shenyu sofa param batchSaveAndNameAndId :"

+ name + ":" + sofaTestList.stream().map(SofaSimpleTypeBean::getName).
collect(Collectors.joining("-")));

return simpleTypeBean;
}

9.5 gRPC快速开始

本文档演示如何将 gRPC服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文档的示例
代码。

9.5.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 gRPC插件设置为开启。
启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。
引入网关对 gRPC的代理插件，在网关的 pom.xml文件中增加如下依赖：

9.5. gRPC快速开始 54

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-grpc
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-grpc

Apache ShenYu document

<!-- apache shenyu grpc plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-grpc</artifactId>
<version>${project.version}</version>

</dependency>
<!-- apache shenyu grpc plugin end-->

9.5.2 运行 shenyu-examples-grpc项目

下载 shenyu‐examples‐grpc

在 shenyu-examples-grpc下执行以下命令生成 java代码:

mvn protobuf:compile //编译消息对象
mvn protobuf:compile-custom //依赖消息对象, 生成接口服务

或者，如果你是通过 IntelliJ IDEA 打开 Apache ShenYu 工程，你可以在 Maven 工具栏中选
中 protobuf:compile 和 protobuf:compile-custom，然后右键 Run Maven Build 一键生成
proto文件对应的 java代码。
运行org.apache.shenyu.examples.grpc.ShenyuTestGrpcApplication中的main方法启动
项目。
成功启动会有如下日志，表示将 gRPC服务成功注册到 shenyu-admin中。

2021-06-18 19:33:32.866 INFO 11004 --- [or_consumer_-19] o.a.s.r.client.http.
utils.RegisterUtils : grpc client register success: {"appName":"127.0.0.1:8080",
"contextPath":"/grpc","path":"/grpc/clientStreamingFun","pathDesc":
"clientStreamingFun","rpcType":"grpc","serviceName":"stream.StreamService",
"methodName":"clientStreamingFun","ruleName":"/grpc/clientStreamingFun",
"parameterTypes":"io.grpc.stub.StreamObserver","rpcExt":"{\"timeout\":5000,\
"methodType\":\"CLIENT_STREAMING\"}","enabled":true,"host":"172.20.10.6","port
":8080,"registerMetaData":false}
2021-06-18 19:33:32.866 INFO 11004 --- [or_consumer_-17] o.a.s.r.client.http.
utils.RegisterUtils : grpc client register success: {"appName":"127.0.0.1:8080",
"contextPath":"/grpc","path":"/grpc/echo","pathDesc":"echo","rpcType":"grpc",
"serviceName":"echo.EchoService","methodName":"echo","ruleName":"/grpc/echo",
"parameterTypes":"echo.EchoRequest,io.grpc.stub.StreamObserver","rpcExt":"{\
"timeout\":5000,\"methodType\":\"UNARY\"}","enabled":true,"host":"172.20.10.6",
"port":8080,"registerMetaData":false}
2021-06-18 19:33:32.866 INFO 11004 --- [or_consumer_-20] o.a.s.r.client.http.
utils.RegisterUtils : grpc client register success: {"appName":"127.0.0.1:8080",
"contextPath":"/grpc","path":"/grpc/bidiStreamingFun","pathDesc":"bidiStreamingFun
","rpcType":"grpc","serviceName":"stream.StreamService","methodName":
"bidiStreamingFun","ruleName":"/grpc/bidiStreamingFun","parameterTypes":"io.grpc.
stub.StreamObserver","rpcExt":"{\"timeout\":5000,\"methodType\":\"BIDI_STREAMING\"}
","enabled":true,"host":"172.20.10.6","port":8080,"registerMetaData":false}
2021-06-18 19:33:32.866 INFO 11004 --- [or_consumer_-21] o.a.s.r.client.http.
utils.RegisterUtils : grpc client register success: {"appName":"127.0.0.1:8080",
"contextPath":"/grpc","path":"/grpc/unaryFun","pathDesc":"unaryFun","rpcType":"grpc
","serviceName":"stream.StreamService","methodName":"unaryFun","ruleName":"/grpc/
unaryFun","parameterTypes":"stream.RequestData,io.grpc.stub.StreamObserver","rpcExt
":"{\"timeout\":5000,\"methodType\":\"UNARY\"}","enabled":true,"host":"172.20.10.6
","port":8080,"registerMetaData":false}

9.5. gRPC快速开始 55

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-grpc

Apache ShenYu document

2021-06-18 19:33:32.866 INFO 11004 --- [or_consumer_-18] o.a.s.r.client.http.
utils.RegisterUtils : grpc client register success: {"appName":"127.0.0.1:8080",
"contextPath":"/grpc","path":"/grpc/serverStreamingFun","pathDesc":
"serverStreamingFun","rpcType":"grpc","serviceName":"stream.StreamService",
"methodName":"serverStreamingFun","ruleName":"/grpc/serverStreamingFun",
"parameterTypes":"stream.RequestData,io.grpc.stub.StreamObserver","rpcExt":"{\
"timeout\":5000,\"methodType\":\"SERVER_STREAMING\"}","enabled":true,"host":"172.
20.10.6","port":8080,"registerMetaData":false}

9.5.3 简单测试

shenyu-examples-grpc项目成功启动之后会自动把加 @ShenyuGrpcClient注解的接口方法注册
到网关。
打开插件列表 -> rpc proxy -> grpc可以看到插件规则配置列表。
下面使用 postman模拟 http的方式来请求你的 gRPC服务。请求参数如下：

{
"data": [

{
"message": "hello grpc"

}
]

}

当前是以 json 的格式传递参数，key 的名称默认是 data，你可以在 GrpcConstants.
JSON_DESCRIPTOR_PROTO_FIELD_NAME 中进行重置；value 的传入则根据你定义的 proto 文
件。

9.5.4 流式调用

Apache ShenYu可以支持 gRPC的流式调用，下面展示的是 gRPC四种方法类型的调用。在流式调用
中，你可以通过数组的形式传递多个参数。

• UNARY

请求参数如下：

{
"data": [

{
"text": "hello grpc"

}
]

}

通过 postman模拟 http请求，发起 UNARY调用。

9.5. gRPC快速开始 56

Apache ShenYu document

• CLIENT_STREAMING

请求参数如下：

{
"data": [

{
"text": "hello grpc"

},
{

"text": "hello grpc"
},
{

"text": "hello grpc"
}

]
}

通过 postman模拟 http请求，发起 CLIENT_STREAMING调用。
• SERVER_STREAMING

请求参数如下：

{
"data": [

{
"text": "hello grpc"

}
]

}

通过 postman模拟 http请求，发起 SERVER_STREAMING调用。
• BIDI_STREAMING

请求参数如下：

{
"data": [

{
"text": "hello grpc"

},
{

"text": "hello grpc"
},
{

"text": "hello grpc"
}

]
}

9.5. gRPC快速开始 57

Apache ShenYu document

通过 postman模拟 http请求，发起 BIDI_STREAMING调用。

9.6 Tars快速开始

本文档演示如何将 Tars服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文档的示例
代码。

9.6.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 tars插件设置为开启。
启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。
引入网关对 tars的依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-tars</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>com.tencent.tars</groupId>
<artifactId>tars-client</artifactId>
<version>1.7.2</version>

</dependency>

9.6.2 运行 shenyu-examples-tars项目

下载shenyu‐examples‐tars

修改 application.yml中的 host为你本地 ip。
修改配置 src/main/resources/ShenyuExampleServer.ShenyuExampleApp.config.conf：

• 建议弄清楚 config的主要配置项含义,参考开发指南。
• config中的 ip要注意提供成本机的。
• local=...,表示开放的本机给 tarsnode连接的端口,如果没有 tarsnode,可以去掉这项配置。
• locator: registry服务的地址，必须是有 ip和 port的，如果不需要 registry来定位服
务，则不需要配置。

9.6. Tars快速开始 58

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-tars
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-tars
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-tars

Apache ShenYu document

• node=tars.tarsnode.ServerObj@xxxx，表示连接的 tarsnode 的地址，如果本地没有
tarsnode，这项配置可以去掉。

更多 config配置说明请参考 Tars官方文档
运行 org.apache.shenyu.examples.tars.ShenyuTestTarsApplicationmain 方法启动项
目。
注：服务启动时需要在启动命令中指定配置文件地址 ‐Dconfig=xxx/ShenyuExampleServer.ShenyuExampleApp.config.conf

如果不加-Dconfig参数配置会可能会如下抛异常：

com.qq.tars.server.config.ConfigurationException: error occurred on load server
config

at com.qq.tars.server.config.ConfigurationManager.
loadServerConfig(ConfigurationManager.java:113)

at com.qq.tars.server.config.ConfigurationManager.init(ConfigurationManager.
java:57)

at com.qq.tars.server.core.Server.loadServerConfig(Server.java:90)
at com.qq.tars.server.core.Server.<init>(Server.java:42)
at com.qq.tars.server.core.Server.<clinit>(Server.java:38)
at com.qq.tars.spring.bean.PropertiesListener.

onApplicationEvent(PropertiesListener.java:37)
at com.qq.tars.spring.bean.PropertiesListener.

onApplicationEvent(PropertiesListener.java:31)
at org.springframework.context.event.SimpleApplicationEventMulticaster.

doInvokeListener(SimpleApplicationEventMulticaster.java:172)
at org.springframework.context.event.SimpleApplicationEventMulticaster.

invokeListener(SimpleApplicationEventMulticaster.java:165)
at org.springframework.context.event.SimpleApplicationEventMulticaster.

multicastEvent(SimpleApplicationEventMulticaster.java:139)
at org.springframework.context.event.SimpleApplicationEventMulticaster.

multicastEvent(SimpleApplicationEventMulticaster.java:127)
at org.springframework.boot.context.event.EventPublishingRunListener.

environmentPrepared(EventPublishingRunListener.java:76)
at org.springframework.boot.SpringApplicationRunListeners.

environmentPrepared(SpringApplicationRunListeners.java:53)
at org.springframework.boot.SpringApplication.

prepareEnvironment(SpringApplication.java:345)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:308)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:1226)
at org.springframework.boot.SpringApplication.run(SpringApplication.java:1215)
at org.apache.shenyu.examples.tars.ShenyuTestTarsApplication.

main(ShenyuTestTarsApplication.java:38)
Caused by: java.lang.NullPointerException

at java.io.FileInputStream.<init>(FileInputStream.java:130)
at java.io.FileInputStream.<init>(FileInputStream.java:93)
at com.qq.tars.common.util.Config.parseFile(Config.java:211)
at com.qq.tars.server.config.ConfigurationManager.

loadServerConfig(ConfigurationManager.java:63)
... 17 more

9.6. Tars快速开始 59

https://github.com/TarsCloud/TarsJava/blob/master/docs/tars_java_user_guide.md

Apache ShenYu document

The exception occurred at load server config

成功启动会有如下日志：

[SERVER] server starting at tcp -h 127.0.0.1 -p 21715 -t 60000...
[SERVER] server started at tcp -h 127.0.0.1 -p 21715 -t 60000...
[SERVER] server starting at tcp -h 127.0.0.1 -p 21714 -t 3000...
[SERVER] server started at tcp -h 127.0.0.1 -p 21714 -t 3000...
[SERVER] The application started successfully.
The session manager service started...
[SERVER] server is ready...
2021-02-09 13:28:24.643 INFO 16016 --- [main] o.s.b.w.embedded.tomcat.
TomcatWebServer : Tomcat started on port(s): 55290 (http) with context path ''
2021-02-09 13:28:24.645 INFO 16016 --- [main] o.d.s.e.tars.
ShenyuTestTarsApplication : Started ShenyuTestTarsApplication in 4.232 seconds
(JVM running for 5.1)
2021-02-09 13:28:24.828 INFO 16016 --- [pool-2-thread-1] o.d.s.client.common.
utils.RegisterUtils : tars client register success: {"appName":"127.0.0.1:21715",
"contextPath":"/tars","path":"/tars/helloInt","pathDesc":"","rpcType":"tars",
"serviceName":"ShenyuExampleServer.ShenyuExampleApp.HelloObj","methodName":
"helloInt","ruleName":"/tars/helloInt","parameterTypes":"int,java.lang.String",
"rpcExt":"{\"methodInfo\":[{\"methodName\":\"helloInt\",\"params\":[{},{}],\
"returnType\":\"java.lang.Integer\"},{\"methodName\":\"hello\",\"params\":[{},{}],\
"returnType\":\"java.lang.String\"}]}","enabled":true}
2021-02-09 13:28:24.837 INFO 16016 --- [pool-2-thread-1] o.d.s.client.common.
utils.RegisterUtils : tars client register success: {"appName":"127.0.0.1:21715",
"contextPath":"/tars","path":"/tars/hello","pathDesc":"","rpcType":"tars",
"serviceName":"ShenyuExampleServer.ShenyuExampleApp.HelloObj","methodName":"hello",
"ruleName":"/tars/hello","parameterTypes":"int,java.lang.String","rpcExt":"{\
"methodInfo\":[{\"methodName\":\"helloInt\",\"params\":[{},{}],\"returnType\":\
"java.lang.Integer\"},{\"methodName\":\"hello\",\"params\":[{},{}],\"returnType\":\
"java.lang.String\"}]}","enabled":true}

9.6.3 测试

shenyu-examples-tars项目成功启动之后会自动把加 @ShenyuTarsClient注解的接口方法注册
到网关。
打开插件列表 -> rpc proxy -> tars可以看到插件规则配置列表：

下面使用 postman模拟 http的方式来请求你的 tars服务：

9.6. Tars快速开始 60

Apache ShenYu document

9.7 Motan快速开始

本文档演示如何将 Motan服务接入到 Apache ShenYu网关。您可以直接在工程下找到本文档的示例
代码。

9.7.1 环境准备

请参考运维部署的内容，选择一种方式启动 shenyu-admin。比如，通过 本地部署 启动 Apache
ShenYu后台管理系统。
启动成功后，需要在基础配置->插件管理中，把 motan插件设置为开启。
启 动 网 关， 如 果 是 通 过 源 码 的 方 式， 直 接 运 行 shenyu-bootstrap 中 的
ShenyuBootstrapApplication。

注意，在启动前，请确保网关已经引入相关依赖。本地已经成功启动 zookeeper。
引入网关对 Motan的代理插件，在网关的 pom.xml文件中增加如下依赖：

<!-- apache shenyu motan plugin -->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-motan</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-core</artifactId>
<version>1.1.9</version>

</dependency>

9.7. Motan快速开始 61

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-motan
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-motan

Apache ShenYu document

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-registry-zookeeper</artifactId>
<version>1.1.9</version>

</dependency>

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-transport-netty4</artifactId>
<version>1.1.9</version>

</dependency>

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-springsupport</artifactId>
<version>1.1.9</version>

</dependency>

9.7.2 运行 shenyu-examples-motan项目

下载 shenyu‐examples‐motan。
运行 org.apache.shenyu.examples.motan.service.TestMotanApplicationmain 方法启
动项目。
成功启动会有如下日志：

2021-07-18 16:46:25.388 INFO 96 --- [main] o.s.b.w.embedded.tomcat.
TomcatWebServer : Tomcat started on port(s): 8081 (http) with context path ''
2021-07-18 16:46:25.393 INFO 96 --- [main] o.a.s.e.m.service.
TestMotanApplication : Started TestMotanApplication in 3.89 seconds (JVM running
for 4.514)
2021-07-18 16:46:25.396 INFO 96 --- [main] info

: [ZookeeperRegistry] Url (null) will set to available to Registry
[zookeeper://localhost:2181/default_rpc/com.weibo.api.motan.registry.
RegistryService/1.0/service]
2021-07-18 16:46:25.399 INFO 96 --- [Thread-6] o.a.s.c.c.s.
ShenyuClientShutdownHook : hook Thread-0 will sleep 3000ms when it start
2021-07-18 16:46:25.399 INFO 96 --- [Thread-6] o.a.s.c.c.s.
ShenyuClientShutdownHook : hook SpringContextShutdownHook will sleep 3000ms
when it start
2021-07-18 16:46:25.445 INFO 96 --- [ntLoopGroup-3-2] info

: NettyChannelHandler channelActive: remote=/192.168.1.8:49740 local=/
192.168.1.8:8002
2021-07-18 16:46:25.445 INFO 96 --- [ntLoopGroup-3-1] info

: NettyChannelHandler channelActive: remote=/192.168.1.8:49739 local=/
192.168.1.8:8002

9.7. Motan快速开始 62

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-motan

Apache ShenYu document

2021-07-18 16:46:25.925 INFO 96 --- [or_consumer_-17] o.a.s.r.client.http.utils.
RegisterUtils : motan client register success: {"appName":"motan","contextPath":"/
motan","path":"/motan/hello","pathDesc":"","rpcType":"motan","serviceName":"org.
apache.shenyu.examples.motan.service.MotanDemoService","methodName":"hello",
"ruleName":"/motan/hello","parameterTypes":"java.lang.String","rpcExt":"{\
"methodInfo\":[{\"methodName\":\"hello\",\"params\":[{\"left\":\"java.lang.String\
",\"right\":\"name\"}]}],\"group\":\"motan-shenyu-rpc\"}","enabled":true,"host":
"192.168.220.1","port":8081,"registerMetaData":false}

9.7.3 测试Http请求

shenyu-examples-motan项目成功启动之后会自动把加 @ShenyuMotanClient注解的接口方法注
册到网关，并添加选择器和规则，如果没有，可以手动添加。
打开插件列表 -> rpc proxy -> motan可以看到插件规则配置列表：
下面使用 postman模拟 http的方式来请求你的 motan服务：

9.7. Motan快速开始 63

10
用户文档

10.1 数据同步配置

本篇主要讲解如何配置数据同步策略，数据同步是指在 shenyu-admin后台操作数据以后，使用何种策
略将数据同步到 Apache ShenYu网关。Apache ShenYu网关当前支持 ZooKeeper、WebSocket、
Http 长轮询、Nacos、Etcd和 Consul进行数据同步。
数据同步原理请参考设计文档中的数据同步原理。

10.1.1 WebSocket同步配置（默认方式，推荐）

• Apache ShenYu网关配置
首先在 pom.xml文件中引入以下依赖：

<!-- apache shenyu data sync start use websocket-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-websocket</artifactId>
<version>${project.version}</version>

</dependency>

然后在 yml文件中进行如下配置:

shenyu:
sync:
websocket :

urls: ws://localhost:9095/websocket
urls: 是指 shenyu-admin 的地址，如果有多个，请使用（,）分割。

• shenyu-admin 配置
在 yml文件中进行如下配置:

64

Apache ShenYu document

shenyu:
sync:
websocket:

enabled: true

当建立连接以后会全量获取一次数据，以后的数据都是增量的更新与新增，性能好。而且也支持断线重
连（默认 30秒）。推荐使用此方式进行数据同步，也是 Apache ShenYu默认的数据同步策略。

10.1.2 Zookeeper同步配置

• Apache ShenYu网关配置
首先在 pom.xml文件中引入以下依赖：

<!-- apache shenyu data sync start use zookeeper-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-zookeeper</artifactId>
<version>${project.version}</version>

</dependency>

然后在 yml文件中进行如下配置:

shenyu:
sync:
zookeeper:

url: localhost:2181
url: 配置成你的 zookeeper 地址，集群环境请使用（,）分隔
sessionTimeout: 5000
connectionTimeout: 2000

• shenyu-admin配置
在 yml文件中进行如下配置:

shenyu:
sync:
zookeeper:

url: localhost:2181
url: 配置成你的 zookeeper 地址，集群环境请使用（,）分隔
sessionTimeout: 5000
connectionTimeout: 2000

使用 zookeeper同步机制也是非常好的，时效性也高，但是要处理 zookeeper环境不稳定，集群脑
裂等问题。

10.1. 数据同步配置 65

Apache ShenYu document

10.1.3 Http长轮询同步配置

• Apache ShenYu网关配置
首先在 pom.xml文件中引入以下依赖：

<!-- apache shenyu data sync start use http-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-http</artifactId>
<version>${project.version}</version>

</dependency>

然后在 yml文件中进行如下配置:

shenyu:
sync:
http:

url: http://localhost:9095
url: 配置成你的 shenyu-admin 的 ip 与端口地址，多个 admin 集群环境请使用（,）分隔。

• shenyu-admin配置
在 yml文件中进行如下配置:

shenyu:
sync:
http:

enabled: true

使用 Http 长轮询进行数据同步，会让网关很轻量，但时效性略低。它是根据分组 key来拉取，如果
数据量过大，过多，会有一定的影响。原因是一个组下面的一个小地方更改，都会拉取整个组的数据。

10.1.4 Nacos同步配置

• Apache ShenYu网关配置
首先在 pom.xml文件中引入以下依赖：

<!-- apache shenyu data sync start use nacos-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-nacos</artifactId>
<version>${project.version}</version>

</dependency>

然后在 yml文件中进行如下配置:

shenyu:
sync:

10.1. 数据同步配置 66

Apache ShenYu document

nacos:
url: localhost:8848
url: 配置成你的 nacos 地址，集群环境请使用（,）分隔。
namespace: 1c10d748-af86-43b9-8265-75f487d20c6c
username:
password:
acm:

enabled: false
endpoint: acm.aliyun.com
namespace:
accessKey:
secretKey:

其他参数配置，请参考 naocs 官网。

• shenyu-admin配置
在 yml文件中进行如下配置:

shenyu:
sync:
nacos:

url: localhost:8848
url: 配置成你的 nacos 地址，集群环境请使用（,）分隔。
namespace: 1c10d748-af86-43b9-8265-75f487d20c6c
username:
password:
acm:

enabled: false
endpoint: acm.aliyun.com
namespace:
accessKey:
secretKey:

其他参数配置，请参考 naocs 官网。

10.1.5 Etcd同步配置

• Apache ShenYu网关配置
首先在 pom.xml文件中引入以下依赖：

<!-- apache shenyu data sync start use etcd-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-etcd</artifactId>
<version>${project.version}</version>
<exclusions>

<exclusion>
<groupId>io.grpc</groupId>

10.1. 数据同步配置 67

Apache ShenYu document

<artifactId>grpc-grpclb</artifactId>
</exclusion>
<exclusion>

<groupId>io.grpc</groupId>
<artifactId>grpc-netty</artifactId>

</exclusion>
</exclusions>

</dependency>

然后在 yml文件中进行如下配置:

shenyu:
sync:
etcd:

url: http://localhost:2379
url: 配置成你的 etcd，集群环境请使用（,）分隔。

• shenyu-admin配置
在 yml文件中进行如下配置:

shenyu:
sync:
etcd:

url: http://localhost:2379
url: 配置成你的 etcd，集群环境请使用（,）分隔。

10.1.6 Consul同步配置

• Apache ShenYu网关配置
首先在 pom.xml文件中引入以下依赖：

<!-- apache shenyu data sync start use consul-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-sync-data-consul</artifactId>
<version>${project.version}</version>

</dependency>

然后在 yml文件中进行如下配置:

shenyu:
sync:
consul:

url: http://localhost:8500
waitTime: 1000 # 查询等待时间
watchDelay: 1000 # 数据同步间隔时间

10.1. 数据同步配置 68

Apache ShenYu document

• shenyu-admin配置
在 yml文件中进行如下配置:

shenyu:
sync:
consul:

url: http://localhost:8500

在\ ``Apache ShenYu``\ 网关和\ ``shenyu-admin`` 重新配置数据同步策略后，需要重启服务。

``Apache ShenYu``\ 网关 和 ``shenyu-admin`` 必须使用相同的同步策略。

10.2 客户端接入配置

应用客户端接入是指将你的微服务接入到 Apache ShenYu网关，当前支持 Http、Dubbo、Spring
Cloud、gRPC、Motan、Sofa、Tars等协议的接入。
将应用客户端接入到 Apache ShenYu网关是通过注册中心来实现的，涉及到客户端注册和服务端同步
数据。注册中心支持 Http、Zookeeper、Etcd、Consul和 Nacos。
本篇文章介绍将应用客户端接入到 Apache ShenYu网关，应该如何配置。相关原理请参考设计文档中
的客户端接入原理。

10.2.1 Http方式注册配置

shenyu-admin配置

在 yml文件中配置注册类型为 http，配置信息如下：

shenyu:
register:
registerType: http
props:

checked: true # 是否开启检测
zombieCheckTimes: 5 # 失败几次后剔除服务
scheduledTime: 10 # 定时检测间隔时间 （秒）

10.2. 客户端接入配置 69

Apache ShenYu document

shenyu-client配置

下面展示的是 http服务作为客户端接入到 Apache ShenYu网关时，通过 Http方式注册配置信息。
其他客户端接入时（Dubbo、Spring Cloud等），配置方式同理。
在微服务中的 yml文件配置注册方式设置为 http，并填写 shenyu-admin服务地址列表，配置信息
如下：

shenyu:
client:
registerType: http
serverLists: http://localhost:9095
props:

contextPath: /http
appName: http
port: 8188
isFull: false

registerType : 服务注册类型，填写 http
serverList: 为 http 注册类型时，填写 Shenyu-Admin 项目的地址，注意加上 http://，多个地址用
英文逗号分隔
port: 你本项目的启动端口，目前 springmvc/tars/grpc 需要进行填写
contextPath: 为你的这个 mvc 项目在 shenyu 网关的路由前缀， 比如/order ，/product 等等，网
关会根据你的这个前缀来进行路由.
appName：你的应用名称，不配置的话，会默认取 `spring.application.name` 的值
isFull: 设置 true 代表代理你的整个服务，false 表示代理你其中某几个 controller；目前适用于
springmvc/springcloud

10.2.2 Zookeeper方式注册配置

shenyu-admin配置

• 首先在 pom文件中加入相关的依赖（默认已经引入）：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-server-zookeeper</artifactId>
<version>${project.version}</version>

</dependency>

• 然后在 yml文件中配置注册类型为 zookeeper，填写 zookeeper服务地址和参数，配置信息
如下：

shenyu:
register:
registerType: zookeeper
serverLists: localhost:2181
props:

10.2. 客户端接入配置 70

Apache ShenYu document

sessionTimeout: 5000
connectionTimeout: 2000

shenyu-client配置

下面展示的是 http服务作为客户端接入到 Apache ShenYu网关时，通过 Zookeeper方式注册配
置信息。其他客户端接入时（Dubbo、Spring Cloud等），配置方式同理。

• 首先在 pom文件中加入相关的依赖：

<!-- apache shenyu zookeeper register center -->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-client-zookeeper</artifactId>
<version>${shenyu.version}</version>

</dependency>

• 然后在 yml中配置注册类型为 zookeeper，并填写 Zookeeper服务地址和相关参数，如下：

shenyu:
client:
registerType: zookeeper
serverLists: localhost:2181
props:

contextPath: /http
appName: http
port: 8189
isFull: false

registerType : 服务注册类型，填写 zookeeper
serverList: 为 zookeeper 注册类型时，填写 zookeeper 地址，多个地址用英文逗号分隔
port: 你本项目的启动端口, 目前 springmvc/tars/grpc 需要进行填写
contextPath: 为你的这个 mvc 项目在 shenyu 网关的路由前缀， 比如/order ，/product 等等，网
关会根据你的这个前缀来进行路由.
appName：你的应用名称，不配置的话，会默认取 `spring.application.name` 的值
isFull: 设置 true 代表代理你的整个服务，false 表示代理你其中某几个 controller；目前适用于
springmvc/springcloud

10.2.3 Etcd方式注册配置

shenyu-admin配置

• 首先在 pom文件中加入相关的依赖（默认已经引入）：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-server-etcd</artifactId>

10.2. 客户端接入配置 71

Apache ShenYu document

<version>${project.version}</version>
</dependency>

• 然后在 yml配置注册类型为 etcd,填写 etcd服务地址和参数，配置信息如下：

shenyu:
register:
registerType: etcd
serverLists : http://localhost:2379

shenyu-client配置

下面展示的是 http服务作为客户端接入到 Apache ShenYu网关时，通过 Etcd方式注册配置信息。
其他客户端接入时（Dubbo、Spring Cloud等），配置方式同理。

• 首先在 pom文件中加入相关的依赖：

<!-- apache shenyu etcd register center -->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-client-etcd</artifactId>
<version>${shenyu.version}</version>

</dependency>

• 然后在 yml中配置注册类型为 etcd,并填写 etcd服务地址和相关参数，如下：

shenyu:
client:
registerType: etcd
serverLists: http://localhost:2379
props:

contextPath: /http
appName: http
port: 8189
isFull: false

registerType : 服务注册类型，填写 etcd
serverList: 为 etcd 注册类型时，填写 etcd 地址，多个地址用英文逗号分隔
port: 你本项目的启动端口, 目前 springmvc/tars/grpc 需要进行填写
contextPath: 为你的这个 mvc 项目在 shenyu 网关的路由前缀， 比如/order ，/product 等等，网
关会根据你的这个前缀来进行路由.
appName：你的应用名称，不配置的话，会默认取 `spring.application.name` 的值
isFull: 设置 true 代表代理你的整个服务，false 表示代理你其中某几个 controller；目前适用于
springmvc/springcloud

10.2. 客户端接入配置 72

Apache ShenYu document

10.2.4 Consul方式注册配置

shenyu-admin配置

• 首先在 pom.xml文件中加入相关的依赖：

<!-- apache shenyu consul register start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-server-consul</artifactId>
<version>${project.version}</version>

</dependency>

<!--spring-cloud-starter-consul-discovery 需要用户自行引入，建议选用 2.2.6.RELEASE 版本，
其他版本不保证正常工作-->
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-discovery</artifactId>
<version>2.2.6.RELEASE</version>

</dependency>
<!-- apache shenyu consul register end-->

• 在 yml文件配置注册中心为 consul,额外还需要配置 spring.cloud.consul,配置信息如下：

shenyu:
register:
registerType: consul
props:

delay: 1
wait-time: 55

spring:
cloud:
consul:

discovery:
instance-id: shenyu-admin-1
service-name: shenyu-admin
tags-as-metadata: false

host: localhost
port: 8500

registerType : 服务注册类型，填写 consul
delay: 对 Metadata 的监控每次轮询的间隔时长，单位为秒，默认 1 秒
wait-time: 对 Metadata 的监控单次请求的等待时间（长轮询机制），单位为秒，默认 55 秒
instance-id: consul 服务必填，consul 需要通过 instance-id 找到具体服务
service-name 服务注册到 consul 时所在的组名，不配置的话，会默认取 `spring.application.
name` 的值
host: 为 consul 注册类型时，填写 consul 地址，默认 localhost
port: 为 consul 注册类型时，填写 consul 端口， 默认是 8500

10.2. 客户端接入配置 73

Apache ShenYu document

tags-as-metadata: false， 必填，如果不填默认为 true，则无法读取 metadata 里的 URI 信息导致
selector 的 upstream 数据更新失败。

shenyu-client配置

注意，“consul“注册中心目前和 “SpringCloud“服务不兼容，会和 “Eureka/Nacos“注册中心冲突
下面展示的是 http服务作为客户端接入到 Apache ShenYu网关时，通过 Consul方式注册配置信
息。其他客户端接入时（Dubbo、Spring Cloud等），配置方式同理。

• 首先在 pom文件中加入相关的依赖：

<!-- apache shenyu consul register center -->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-client-consul</artifactId>
<version>${shenyu.version}</version>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-discovery</artifactId>
<version>2.2.6.RELEASE</version>

</dependency>

• 然后在 yml文件中配置注册方式为 consul,额外还需要配置 spring.cloud.consul,配置信
息如下：

shenyu:
client:
registerType: consul
props:

contextPath: /http
appName: http
port: 8188
isFull: false

spring:
cloud:
consul:

discovery:
instance-id: shenyu-http-1
service-name: shenyu-http

host: localhost
port: 8500

registerType : 服务注册类型，填写 consul
shenyu.client.props.port: 你本项目的启动端口, 目前 springmvc/tars/grpc 需要进行填写
contextPath: 为你的这个 mvc 项目在 shenyu 网关的路由前缀， 比如/order ，/product 等等，网
关会根据你的这个前缀来进行路由.

10.2. 客户端接入配置 74

Apache ShenYu document

appName：你的应用名称，不配置的话，会默认取 `spring.application.name` 的值
isFull: 设置 true 代表代理你的整个服务，false 表示代理你其中某几个 controller；目前适用于
springmvc
instance-id: consul 服务必填，consul 需要通过 instance-id 找到具体服务
service-name 服务注册到 consul 时所在的组名，不配置的话，会默认取 `spring.application.
name` 的值
host: 为 consul 注册类型时，填写 consul 地址，默认 localhost
spring.cloud.consul.port: 为 consul 注册类型时，填写 consul 端口， 默认是 8500

10.2.5 Nacos方式注册配置

shenyu-admin配置

• 首先在 pom文件中加入相关的依赖（默认已经引入）：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-server-nacos</artifactId>
<version>${project.version}</version>

</dependency>

• 然后在 yml文件中配置注册中心为 nacos,填写相关 nacos服务地址和参数，还有 nacos的命
名空间（需要和 shenyu-client保持一致），配置信息如下：

shenyu:
register:
registerType: nacos
serverLists : localhost:8848
props:

nacosNameSpace: ShenyuRegisterCenter

shenyu-client配置

下面展示的是 http服务作为客户端接入到 Apache ShenYu网关时，通过 Nacos方式注册配置信
息。其他客户端接入时（Dubbo、Spring Cloud等），配置方式同理。

• 首先在 pom文件中加入相关的依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-register-client-nacos</artifactId>
<version>${shenyu.version}</version>

</dependency>

• 然后在 yml中配置注册方式为 nacos,并填写 nacos服务地址和相关参数，还需要 Nacos命名
空间（需要和 shenyu-admin端保持一致），IP（可不填，则自动获取本机 ip）和端口，配置信
息如下：

10.2. 客户端接入配置 75

Apache ShenYu document

shenyu:
client:
registerType: nacos
serverLists: localhost:8848
props:

contextPath: /http
appName: http
port: 8188
isFull: false
nacosNameSpace: ShenyuRegisterCenter

registerType : 服务注册类型，填写 nacos
serverList: 为 nacos 注册类型时，填写 nacos 地址，多个地址用英文逗号分隔
port: 你本项目的启动端口, 目前 springmvc/tars/grpc 需要进行填写
contextPath: 为你的这个 mvc 项目在 shenyu 网关的路由前缀，比如/order ，/product 等等，网关
会根据你的这个前缀来进行路由.
appName：你的应用名称，不配置的话，会默认取 `spring.application.name` 的值
isFull: 设置 true 代表代理你的整个服务，false 表示代理你其中某几个 controller；目前适用于
springmvc/springcloud
nacosNameSpace: nacos 的命名空间

总结，本文主要介绍了如何将你的微服务（当前支持 Http、Dubbo、Spring Cloud、gRPC、Motan、
Sofa、Tars等协议）接入到 Apache ShenYu网关。介绍了注册中心的原理，Apache ShenYu网关
支持的注册中心有 Http、Zookeeper、Etcd、Consul、Nacos等方式。介绍了以 http服务作为客
户端接入到 Apache ShenYu网关时，使用不同方式注册配置信息。

10.3 Http服务接入

本文档旨在帮助 http服务接入到 Apache ShenYu网关。Apache ShenYu网关使用 divide插件来
处理 http请求。
接入前，请正确启动 shenyu-admin，并开启 divide插件，在网关端和 Http服务端引入相关依赖。
可以参考前面的Http快速开始。
应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.3.1 在网关中引入 divide插件

• 在网关的 pom.xml文件中增加如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-divide</artifactId>
<version>${project.version}</version>

</dependency>

10.3. Http服务接入 76

Apache ShenYu document

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-httpclient</artifactId>
<version>${project.version}</version>

</dependency>

10.3.2 Http请求接入网关（springMvc体系用户）

可以参考：shenyu‐examples‐http

• SpringBoot用户
在你的 http服务中的 pom.xml文件新增如下依赖:

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-springmvc</artifactId>
<version>${shenyu.version}</version>

</dependency>

• SpringMvc用户
在你的 http服务中的 pom.xml文件新增如下依赖:

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-client-springmvc</artifactId>
<version>${shenyu.version}</version>

</dependency>

并在你的 bean定义的 xml文件中新增如下：

<bean id ="springMvcClientBeanPostProcessor" class ="org.apache.shenyu.client.
springmvc.init.SpringMvcClientBeanPostProcessor">

<constructor-arg ref="shenyuRegisterCenterConfig"/>
</bean>

<bean id="shenyuRegisterCenterConfig" class="org.apache.shenyu.register.common.
config.ShenyuRegisterCenterConfig">

<property name="registerType" value="http"/>
<property name="serverList" value="http://localhost:9095"/>
<property name="props">

<map>
<entry key="contextPath" value="/你的 contextPath"/>
<entry key="appName" value=" 你的名字"/>
<entry key="port" value=" 你的端口"/>
<entry key="isFull" value="false"/>

</map>

10.3. Http服务接入 77

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-http

Apache ShenYu document

</property>
</bean>

在你的 controller的接口上加上 @ShenyuSpringMvcClient注解。
你可以把注解加到 Controller类上面，里面的 path属性则为前缀，如果含有 /**代表你的整个接
口需要被网关代理。
示例一
下面表示的是 /test/payment，/test/findByUserId都会被网关代理。

@RestController
@RequestMapping("/test")
@ShenyuSpringMvcClient(path = "/test/**")
public class HttpTestController {

@PostMapping("/payment")
public UserDTO post(@RequestBody final UserDTO userDTO) {

return userDTO;
}

@GetMapping("/findByUserId")
public UserDTO findByUserId(@RequestParam("userId") final String userId) {

UserDTO userDTO = new UserDTO();
userDTO.setUserId(userId);
userDTO.setUserName("hello world");
return userDTO;

}
}

示例二
下面表示的是：/order/save会被网关代理，而 /order/findById则不会。

@RestController
@RequestMapping("/order")
@ShenyuSpringMvcClient(path = "/order")
public class OrderController {

@PostMapping("/save")
@ShenyuSpringMvcClient(path = "/save")
public OrderDTO save(@RequestBody final OrderDTO orderDTO) {

orderDTO.setName("hello world save order");
return orderDTO;

}

@GetMapping("/findById")
public OrderDTO findById(@RequestParam("id") final String id) {

OrderDTO orderDTO = new OrderDTO();

10.3. Http服务接入 78

Apache ShenYu document

orderDTO.setId(id);
orderDTO.setName("hello world findById");
return orderDTO;

}
}

• 启动你的项目，你的服务接口接入到了网关，进入 shenyu-admin后台管理系统的插件列表 ->
http process -> divide，看到自动创建的选择器和规则。

10.3.3 Http请求接入网关（其他语言，非 springMvc体系）

• 首先在 shenyu-admin找到 divide插件，进行选择器，和规则的添加，进行流量的匹配筛选。
• 如果不懂怎么配置，请参考选择器和规则管理。
• 您也可以自定义开发属于你的 http-client，参考多语言Http客户端开发。

10.3.4 用户请求

当你的 Http服务接入到 Apache ShenYu网关后，请求方式没有很大的变动，小的改动有两点。
• 第一点，你之前请求的域名是你自己的服务，现在要换成网关的域名。
• 第二点，Apache ShenYu 网关需要有一个路由前缀，这个路由前缀就是你接入项目进行配置
contextPath，如果熟的话，可以在 shenyu-admin中的 divide插件进行自由更改。

– 比如你有一个 order 服务它有一个接口，请求路径 http://localhost:8080/test/
save。

– 现在就需要换成：http://localhost:9195/order/test/save。
– 其中 localhost:9195为网关的 ip端口，默认端口是 9195，/order是你接入网关配置
的 contextPath。

– 其他参数，请求方式不变。
然后你就可以进行访问了，如此的方便与简单。

10.4 Dubbo服务接入

10.4.1 说明

• 此篇文章是介绍 dubbo服务接入到 Apache ShenYu网关，Apache ShenYu网关使用 dubbo插
件来接入 Dubbo服务。

• 当前支持 alibaba dubbo（< 2.7.x）以及 apache dubbo (>=2.7.x)。
• 接入前，请正确启动 shenyu-admin，并开启 dubbo插件，在网关端和 Dubbo服务端引入相关
依赖。可以参考前面的 Dubbo快速开始。

10.4. Dubbo服务接入 79

Apache ShenYu document

应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.4.2 在网关中引入 dubbo插件

• 在网关的 pom.xml文件中增加如下依赖：
– alibaba dubbo用户, dubbo版本换成你的，引入你需要的注册中心依赖，以下是参考。

<!-- apache shenyu alibaba dubbo plugin start-->
<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-alibaba-dubbo</artifactId>
<version>${project.version}</version>

</dependency>
<!-- apache shenyu alibaba dubbo plugin end-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>dubbo</artifactId>
<version>2.6.5</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>4.0.1</version>

</dependency>

– apache dubbo用户，dubbo版本换成你的，引入你需要的注册中心依赖，如下是参考。

<!-- apache shenyu apache dubbo plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-apache-dubbo</artifactId>
<version>${project.version}</version>

</dependency>
<!-- apache shenyu apache dubbo plugin end-->

<dependency>

10.4. Dubbo服务接入 80

Apache ShenYu document

<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo</artifactId>
<version>2.7.5</version>

</dependency>
<!-- Dubbo Nacos registry dependency start -->
<dependency>

<groupId>org.apache.dubbo</groupId>
<artifactId>dubbo-registry-nacos</artifactId>
<version>2.7.5</version>

</dependency>
<dependency>

<groupId>com.alibaba.nacos</groupId>
<artifactId>nacos-client</artifactId>
<version>1.1.4</version>

</dependency>
<!-- Dubbo Nacos registry dependency end-->

<!-- Dubbo zookeeper registry dependency start-->
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>4.0.1</version>

</dependency>
<!-- Dubbo zookeeper registry dependency end -->

• 重启网关服务。

10.4.3 dubbo服务接入网关

可以参考：shenyu‐examples‐dubbo

• alibaba dubbo用户
如果是 springboot构建，引入以下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-alibaba-dubbo</artifactId>

10.4. Dubbo服务接入 81

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-dubbo

Apache ShenYu document

<version>${shenyu.version}</version>
</dependency>

如果是 spring构建，引入以下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-client-alibaba-dubbo</artifactId>
<version>${shenyu.version}</version>

</dependency>

并在你的 bean定义的 xml文件中新增如下：

<bean id ="alibabaDubboServiceBeanPostProcessor" class ="org.apache.shenyu.client.
alibaba.dubbo.AlibabaDubboServiceBeanPostProcessor">

<constructor-arg ref="shenyuRegisterCenterConfig"/>
</bean>

<bean id="shenyuRegisterCenterConfig" class="org.apache.shenyu.register.common.
config.ShenyuRegisterCenterConfig">

<property name="registerType" value="http"/>
<property name="serverList" value="http://localhost:9095"/>
<property name="props">

<map>
<entry key="contextPath" value="/你的 contextPath"/>
<entry key="appName" value=" 你的名字"/>
<entry key="ifFull" value="false"/>

</map>
</property>

</bean>

• apache dubbo用户
如果是 springboot构建，引入以下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-apache-dubbo</artifactId>
<version>${shenyu.version}</version>

</dependency>

如果是 spring构建，引入以下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-client-apache-dubbo</artifactId>
<version>${shenyu.version}</version>

</dependency>

并在你的 bean定义的 xml文件中新增如下：

10.4. Dubbo服务接入 82

Apache ShenYu document

<bean id ="apacheDubboServiceBeanPostProcessor" class ="org.apache.shenyu.client.
apache.dubbo.ApacheDubboServiceBeanPostProcessor">

<constructor-arg ref="shenyuRegisterCenterConfig"/>
</bean>

<bean id="shenyuRegisterCenterConfig" class="org.apache.shenyu.register.common.
config.ShenyuRegisterCenterConfig">

<property name="registerType" value="http"/>
<property name="serverList" value="http://localhost:9095"/>
<property name="props">

<map>
<entry key="contextPath" value="/你的 contextPath"/>
<entry key="appName" value=" 你的名字"/>
<entry key="ifFull" value="false"/>

</map>
</property>

</bean>

10.4.4 dubbo插件设置

• 首先在 shenyu-admin插件管理中，把 dubbo插件设置为开启。
• 其次在 dubbo插件中配置你的注册地址，或者其他注册中心的地址。

{"register":"zookeeper://localhost:2181"} or {"register":"nacos://localhost:8848
"}

10.4.5 接口注册到网关

• 在 dubbo服务实现类的方法上加上 @ShenyuDubboClient注解，表示该接口方法注册到网关。
• 启动你的提供者，成功启动后，进入后台管理系统的插件列表 -> rpc proxy -> dubbo，会看
到自动注册的选择器和规则信息。

10.4.6 dubbo用户请求及参数说明

可以通过 http的方式来请求你的 dubbo服务。Apache ShenYu网关需要有一个路由前缀，这个路由
前缀就是你接入项目进行配置 contextPath

比如你有一个 order服务它有一个接口，它的注册路径 /order/test/save

现在就是通过 post方式请求网关：http://localhost:9195/order/test/save

其中 localhost:9195为网关的 ip端口，默认端口是 9195，/order是你 dubbo接入网关配置
的 contextPath

• 参数传递：

10.4. Dubbo服务接入 83

http://localhost:9195/order/test/save

Apache ShenYu document

– 通过 http协议，post方式访问网关，通过在 http body中传入 json类型参数。
– 更多参数类型传递，可以参考 shenyu‐examples‐dubbo中的接口定义，以及参数传递方式。

• 单个 java bean参数类型（默认）
• 多参数类型支持，在网关的 yaml配置中新增如下配置：

shenyu:
dubbo:

parameter: multi

• 自定义实现多参数支持:

– 在你搭建的网关项目中，新增一个类MyDubboParamResolveService，实现org.apache.
shenyu.web.dubbo.DubboParamResolveService接口。

public interface DubboParamResolveService {

/**
* Build parameter pair.
* this is Resolve http body to get dubbo param.
*
* @param body the body
* @param parameterTypes the parameter types
* @return the pair
*/

Pair<String[], Object[]> buildParameter(String body, String
parameterTypes);
}

– body为 http中 body传的 json字符串。
– parameterTypes: 匹配到的方法参数类型列表，如果有多个，则使用 ,分割。
– Pair中，left为参数类型，right为参数值，这是 dubbo泛化调用的标准
– 把你的类注册成 Spring的 bean，覆盖默认的实现。

@Bean
public DubboParamResolveService myDubboParamResolveService() {

return new MyDubboParamResolveService();
}

10.4. Dubbo服务接入 84

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-dubbo

Apache ShenYu document

10.4.7 服务治理

• 标签路由
– 请求时在 header中添加 Dubbo_Tag_Route，并设置对应的值，之后当前请求就会路由到
指定 tag的 provider，只对当前请求有效。

• 服务提供者直连
– 设置 @ShenyuDubboClient注解中的 url属性。
– 修改 Admin控制台修改元数据内的 url属性。
– 对所有请求有效。

• 参数验证和自定义异常
– 指定 validation = "shenyuValidation"。
– 在接口中抛出 ShenyuException 时，异常信息会返回，需要注意的是显式抛出
ShenyuException。

@Service(validation = "shenyuValidation")
public class TestServiceImpl implements TestService {

@Override
@ShenyuDubboClient(path = "/test", desc = "test method")
public String test(@Valid HelloServiceRequest name) throws ShenyuException

{
if (true){

throw new ShenyuException("Param binding error.");
}
return "Hello " + name.getName();

}
}

– 请求参数

public class HelloServiceRequest implements Serializable {

private static final long serialVersionUID = -5968745817846710197L;

@NotEmpty(message = "name cannot be empty")
private String name;

@NotNull(message = "age cannot be null")
private Integer age;

public String getName() {
return name;

}

public void setName(String name) {

10.4. Dubbo服务接入 85

Apache ShenYu document

this.name = name;
}

public Integer getAge() {
return age;

}

public void setAge(Integer age) {
this.age = age;

}
}

– 发送请求

{
"name": ""

}

– 返回

{
"code": 500,
"message": "Internal Server Error",
"data": "name cannot be empty,age cannot be null"

}

– 当按照要求传递请求参数时，会返回自定义异常的信息

{
"code": 500,
"message": "Internal Server Error",
"data": "Param binding error."

}

10.4.8 Http–>网关–> Dubbo Provider

实际上就是把 http请求，转成 dubbo协议，内部使用 dubbo 泛化来进行调用。dubbo服务在接入网
关的时候，加上了 @ShenyuDubboClient注解，并设置了 path字段来指定请求路径。然后在 yml中
配置了 contextPath。
假如有一个这样的方法, contextPath配置的是 /dubbo。

@Override
@ShenyuDubboClient(path = "/insert", desc = "插入一条数据")
public DubboTest insert(final DubboTest dubboTest) {

return dubboTest;
}

10.4. Dubbo服务接入 86

Apache ShenYu document

那么请求的路径为：http://localhost:9195/dubbo/insert，localhost:9195是网关的地址，
如果你更改了，这里也要改。
请求参数：DubboTest是一个 javabean对象，有 2个字段，id与 name，那么我们通过 body中传
递这个对象的 json数据就好。

{"id": "1234", "name": "XIAO5y"}

如果接口中，没有参数，那么 body传值为：

{}

如果接口有很多个参数，请参考上面介绍过的多参数类型支持。

10.5 Spring Cloud服务接入

此篇文章是介绍 springCloud 服务接入到 Apache ShenYu 网关，Apache ShenYu 网关使用
springCloud插件来接入 Spring Cloud服务。
接入前，请正确启动 shenyu-admin，并开启 springCloud插件，在网关端和 springCloud服务
端引入相关依赖。可以参考前面的 Spring Cloud快速开始。
应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.5.1 在网关中引入 springCloud插件

• 在网关的 pom.xml文件中引入如下依赖。

<!-- apache shenyu springCloud plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-springcloud</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-httpclient</artifactId>
<version>${project.version}</version>

</dependency>
<!-- apache shenyu springCloud plugin end-->

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-commons</artifactId>
<version>2.2.0.RELEASE</version>

</dependency>

10.5. Spring Cloud服务接入 87

Apache ShenYu document

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-ribbon</artifactId>
<version>2.2.0.RELEASE</version>

</dependency>

• 如果你使用 eureka作为 springCloud的注册中心
– 在网关的 pom.xml文件中，新增如下依赖：

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
<version>2.2.0.RELEASE</version>

</dependency>

• 在网关的 yml文件中，新增如下配置：

eureka:
client:
serviceUrl:

defaultZone: http://localhost:8761/eureka/ # 你的 eureka 地址
instance:
prefer-ip-address: true

• 如果你使用 nacos作为 springCloud的注册中心
– 在网关的 pom.xml文件中，新增如下依赖：

<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
<version>2.1.0.RELEASE</version>

</dependency>

• 在网关的 yml文件中新增如下配置：

spring:
cloud:

nacos:
discovery:

server-addr: 127.0.0.1:8848 # 你的 nacos 地址

• 重启你的网关服务。

10.5. Spring Cloud服务接入 88

Apache ShenYu document

10.5.2 SpringCloud服务接入网关

可以参考：shenyu‐examples‐springcloud

• 在由 SpringCloud构建的微服务中，引入如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-springcloud</artifactId>
<version>${shenyu.version}</version>

</dependency>

• 在 controller接口上加上 @ShenyuSpringCloudClient注解。注解可以加到类或方法上面，
path属性为前缀，如果含有 /**代表你的整个接口需要被网关代理。

• 示例一：代表 /test/payment, /test/findByUserId都会被网关代理。

@RestController
@RequestMapping("/test")
@ShenyuSpringCloudClient(path = "/test/**")
public class HttpTestController {

@PostMapping("/payment")
public UserDTO post(@RequestBody final UserDTO userDTO) {

return userDTO;
}

@GetMapping("/findByUserId")
public UserDTO findByUserId(@RequestParam("userId") final String userId) {

UserDTO userDTO = new UserDTO();
userDTO.setUserId(userId);
userDTO.setUserName("hello world");
return userDTO;

}
}

• 示例二：代表 /order/save，会被网关代理，而/order/findById则不会。

@RestController
@RequestMapping("/order")
@ShenyuSpringCloudClient(path = "/order")
public class OrderController {

@PostMapping("/save")
@ShenyuSpringMvcClient(path = "/save")
public OrderDTO save(@RequestBody final OrderDTO orderDTO) {

orderDTO.setName("hello world save order");
return orderDTO;

}

10.5. Spring Cloud服务接入 89

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-springcloud

Apache ShenYu document

@GetMapping("/findById")
public OrderDTO findById(@RequestParam("id") final String id) {

OrderDTO orderDTO = new OrderDTO();
orderDTO.setId(id);
orderDTO.setName("hello world findById");
return orderDTO;

}
}

• 示例三：isFull：true代表整个服务都会被网关代理。

shenyu:
client:
registerType: http
serverLists: http://localhost:9095
props:

contextPath: /http
appName: http
isFull: true

registerType : 服务注册类型，请参考应用客户端接入文档
serverList: 服务列表，请参考应用客户端接入文档
contextPath: 为你的项目在 shenyu 网关的路由前缀。 比如/order ，/product 等等，网关会根据你
的这个前缀来进行路由。
appName：你的应用名称，不配置的话，会默认取 application 中的名称
isFull: 设置 true 代表代理你的整个服务，false 表示代理你其中某几个 controller

@RestController
@RequestMapping("/order")
public class OrderController {

@PostMapping("/save")
@ShenyuSpringMvcClient(path = "/save")
public OrderDTO save(@RequestBody final OrderDTO orderDTO) {

orderDTO.setName("hello world save order");
return orderDTO;

}

@GetMapping("/findById")
public OrderDTO findById(@RequestParam("id") final String id) {

OrderDTO orderDTO = new OrderDTO();
orderDTO.setId(id);
orderDTO.setName("hello world findById");
return orderDTO;

}
}

• 启动你的服务成功注册后，进入后台管理系统的插件列表 -> rpc proxy -> springCloud，会
看到自动注册的选择器和规则信息。

10.5. Spring Cloud服务接入 90

Apache ShenYu document

10.5.3 用户请求

和之前的访问方式没有大的改变，需要注意的是：
• 你之前请求的域名是你自己的服务，现在要换成网关的域名。
• 网关需要有一个路由前缀，这个路由前缀就是你接入项目进行配置 contextPath，可以在
shenyu-admin中的 springCloud插件进行更改。
比如你有一个 order 服务它有一个接口，请求路径 http://localhost:8080/test/
save

现在就需要换成：http://localhost:9195/order/test/save

其中 localhost:9195为网关的 ip端口，默认端口是 9195，/order是你接入网关配置
的 contextPath

其他参数，请求方式不变。然后你就可以进行访问了，如此的方便与简单。

10.6 Sofa服务接入

此篇文章是介绍 sofa服务接入到 Apache ShenYu网关，Apache ShenYu网关使用 sofa插件来接
入 sofa服务。
接入前，请正确启动 shenyu-admin，并开启 sofa插件，在网关端和 sofa服务端引入相关依赖。可
以参考前面的 Sofa快速开始。
应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.6.1 在网关中引入 sofa插件

• 在网关的 pom.xml文件中增加如下依赖：
• sofa版本换成你的，引入你需要的注册中心依赖，以下是参考。

<dependency>
<groupId>com.alipay.sofa</groupId>
<artifactId>sofa-rpc-all</artifactId>
<version>5.7.6</version>
<exclusions>

<exclusion>
<groupId>net.jcip</groupId>
<artifactId>jcip-annotations</artifactId>

</exclusion>
</exclusions>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-client</artifactId>

10.6. Sofa服务接入 91

Apache ShenYu document

<version>4.0.1</version>
</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.curator</groupId>
<artifactId>curator-recipes</artifactId>
<version>4.0.1</version>

</dependency>
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-sofa</artifactId>
<version>${project.version}</version>

</dependency>

• 重启网关服务。

10.6.2 sofa服务接入网关

可以参考：shenyu‐examples‐sofa

如果是 springboot构建，引入以下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-sofa</artifactId>
<version>${shenyu.version}</version>

</dependency>

如果是 spring构建，引入以下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-client-sofa</artifactId>
<version>${shenyu.version}</version>

</dependency>

并在你的bean定义的 xml文件中新增如下：xml <bean id ="sofaServiceBeanPostProcessor"
class ="org.apache.shenyu.client.sofa.SofaServiceBeanPostProcessor">
<constructor-arg ref="shenyuRegisterCenterConfig"/> </bean> <bean
id="shenyuRegisterCenterConfig" class="org.apache.shenyu.register.
common.config.ShenyuRegisterCenterConfig"> <property name="registerType"
value="http"/> <property name="serverList" value="http://localhost:9095"/
> <property name="props"> <map> <entry key="contextPath" value="/你 的

10.6. Sofa服务接入 92

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-sofa

Apache ShenYu document

contextPath"/> <entry key="appName" value=" 你 的 名 字"/> <entry key="ifFull"
value="false"/> </map> </property> </bean>

10.6.3 sofa插件设置

• 首先在 shenyu-admin插件管理中，把 sofa插件设置为开启。
• 其次在 sofa插件中配置你的注册地址或者其他注册中心的地址.

{"protocol":"zookeeper","register":"127.0.0.1:2181"}

10.6.4 接口注册到网关

• 在 sofa服务的类或者方法上加上 @ShenyuSofaClient注解，表示该类或接口方法注册到网关。
• 启动 sofa服务提供者，成功注册后，进入后台管理系统的插件列表 -> rpc proxy -> sofa，
会看到自动注册的选择器和规则信息。

10.6.5 sofa用户请求及参数说明

可以通过 http的方式来请求你的 sofa服务。Apache ShenYu网关需要有一个路由前缀，这个路由前
缀就是接入网关配置的 contextPath。

比如你有一个 order服务它有一个接口，它的注册路径 /order/test/save

现在就是通过 post方式请求网关：http://localhost:9195/order/test/save

其中 localhost:9195为网关的 ip端口，默认端口是 9195，/order是你 sofa接入网
关配置的 contextPath

• 参数传递：
– 通过 http协议，post方式访问网关，通过在 http body中传入 json类型参数。
– 更多参数类型传递，可以参考 shenyu‐examples‐sofa中的接口定义，以及参数传递方式。

• 单个 java bean参数类型（默认）
• 自定义实现多参数支持：

– 在你搭建的网关项目中，新增一个类 MySofaParamResolveService，实现 org.apache.
shenyu.plugin.api.sofa.SofaParamResolveService接口。

public interface SofaParamResolveService {

/**
* Build parameter pair.
* this is Resolve http body to get sofa param.
*
* @param body the body
* @param parameterTypes the parameter types

10.6. Sofa服务接入 93

http://localhost:9195/order/test/save
https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-sofa

Apache ShenYu document

* @return the pair
*/

Pair<String[], Object[]> buildParameter(String body, String parameterTypes);
}

• body为 http中 body传的 json字符串。
• parameterTypes: 匹配到的方法参数类型列表，如果有多个，则使用,分割。
• Pair中，left为参数类型，right为参数值，这是 sofa泛化调用的标准。
• 把你的类注册成 Spring的 bean，覆盖默认的实现。

@Bean
public SofaParamResolveService mySofaParamResolveService() {

return new MySofaParamResolveService();
}

10.7 gRPC服务接入

此篇文章是介绍 gRPC服务接入到 Apache ShenYu网关，Apache ShenYu网关使用 grpc插件来接
入 gRPC服务。
接入前，请正确启动 shenyu-admin，并开启 grpc插件，在网关端和 grpc服务端引入相关依赖。可
以参考前面的 gRPC快速开始。
应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.7.1 在网关中引入 grpc插件

引入网关对 gRPC的代理插件，在网关的 pom.xml文件中增加如下依赖：

<!-- apache shenyu grpc plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-grpc</artifactId>
<version>${project.version}</version>

</dependency>
<!-- apache shenyu grpc plugin end-->

• 重启你的网关服务。

10.7. gRPC服务接入 94

Apache ShenYu document

10.7.2 gRPC服务接入网关

可以参考：shenyu‐examples‐grpc

• 在由 gRPC构建的微服务中，引入如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-grpc</artifactId>
<version>${shenyu.version}</version>
<exclusions>

<exclusion>
<artifactId>guava</artifactId>
<groupId>com.google.guava</groupId>

</exclusion>
</exclusions>

</dependency>

在 shenyu-examples-grpc下执行以下命令生成 java代码。

mvn protobuf:compile //编译消息对象
mvn protobuf:compile-custom //依赖消息对象, 生成接口服务

在 gRPC服务接口实现类上加上 @ShenyuGrpcClient注解。启动你的服务提供者，成功注册后，在后
台管理系统进入插件列表 -> rpc proxy -> grpc，会看到自动注册的选择器和规则信息。
示例：

@Override
@ShenyuGrpcClient(path = "/echo", desc = "echo")
public void echo(EchoRequest request, StreamObserver<EchoResponse>
responseObserver) {

System.out.println("Received: " + request.getMessage());
EchoResponse.Builder response = EchoResponse.newBuilder()

.setMessage("ReceivedHELLO")

.addTraces(Trace.newBuilder().setHost(getHostname()).build());
responseObserver.onNext(response.build());
responseObserver.onCompleted();

}

10.7.3 用户请求

可以通过 http的方式来请求你的 grpc服务。Apache ShenYu网关需要有一个路由前缀，这个路由
前缀就是你接入项目进行配置 contextPath。
如果你的 proto文件定义如下：

message EchoRequest {
string message = 1;

10.7. gRPC服务接入 95

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-grpc

Apache ShenYu document

}

那么请求参数如下所示：

{
"data": [

{
"message": "hello grpc"

}
]

}

当前是以 json 的格式传递参数，key 的名称默认是 data，你可以在 GrpcConstants.
JSON_DESCRIPTOR_PROTO_FIELD_NAME 中进行重置；value 的传入则根据你定义的 proto 文
件。
Apache ShenYu可以支持 gRPC的流式调用，通过数组的形式传递多个参数。
如果你的 proto文件定义如下：

message RequestData {
string text = 1;

}

对应的方法调用请求参数如下：
• UNARY

{
"data": [

{
"text": "hello grpc"

}
]

}

• CLIENT_STREAMING

{
"data": [

{
"text": "hello grpc"

},
{

"text": "hello grpc"
},
{

"text": "hello grpc"
}

]

10.7. gRPC服务接入 96

Apache ShenYu document

}

• SERVER_STREAMING

{
"data": [

{
"text": "hello grpc"

}
]

}

• BIDI_STREAMING

{
"data": [

{
"text": "hello grpc"

},
{

"text": "hello grpc"
},
{

"text": "hello grpc"
}

]
}

10.8 Tars服务接入

此篇文介绍如何将 Tars服务接入到 Apache ShenYu网关，Apache ShenYu网关使用 tars插件来
接入 Tars服务。
接入前，请正确启动 shenyu-admin，并开启 tars插件，在网关端和 tars服务端引入相关依赖。可
以参考前面的 Tars快速开始。
应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.8. Tars服务接入 97

Apache ShenYu document

10.8.1 在网关中引入 tars插件

引入网关对 Tars的代理插件，在网关的 pom.xml文件中增加如下依赖：

<!-- apache shenyu tars plugin start-->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-tars</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>com.tencent.tars</groupId>
<artifactId>tars-client</artifactId>
<version>1.7.2</version>

</dependency>
<!-- apache shenyu tars plugin end-->

• 重启你的网关服务。

10.8.2 Tars服务接入网关

可以参考：shenyu‐examples‐tars

• 在由 Tars构建的微服务中，引入如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-tars</artifactId>
<version>${shenyu.version}</version>

</dependency>

在 Tasr 服务接口实现类上加上 @ShenyuTarsService 注解，在方法上加上注解
@ShenyuTarsClient，启动你的服务提供者，成功注册后，在后台管理系统进入插件列表 ->
rpc proxy -> tars，会看到自动注册的选择器和规则信息。
示例：

@TarsServant("HelloObj")
@ShenyuTarsService(serviceName = "ShenyuExampleServer.ShenyuExampleApp.HelloObj")
public class HelloServantImpl implements HelloServant {

@Override
@ShenyuTarsClient(path = "/hello", desc = "hello")
public String hello(int no, String name) {

return String.format("hello no=%s, name=%s, time=%s", no, name, System.
currentTimeMillis());

}

@Override

10.8. Tars服务接入 98

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-tars

Apache ShenYu document

@ShenyuTarsClient(path = "/helloInt", desc = "helloInt")
public int helloInt(int no, String name) {

return 1;
}

}

10.8.3 用户请求

可以通过 http的方式来请求你的 tars服务。Apache ShenYu网关需要有一个路由前缀，这个路由
前缀就是接入网关配置的 contextPath。比如：http://localhost:9195/tars/hello。

10.9 Motan服务接入

此篇文介绍如何将 Motan服务接入到 Apache ShenYu网关，Apache ShenYu网关使用 motan插件
来接入 Motan服务。
接入前，请正确启动 shenyu-admin，并开启 motan插件，在网关端和 motan服务端引入相关依赖。
可以参考前面的Motan快速开始。
应用客户端接入的相关配置请参考：客户端接入配置。
数据同步的相关配置请参考：数据同步配置。

10.9.1 在网关中引入motan插件

引入网关对 Motan的代理插件，在网关的 pom.xml文件中增加如下依赖：

<!-- apache shenyu motan plugin -->
<dependency>

<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-plugin-motan</artifactId>
<version>${project.version}</version>

</dependency>

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-core</artifactId>
<version>1.1.9</version>

</dependency>

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-registry-zookeeper</artifactId>
<version>1.1.9</version>

</dependency>

10.9. Motan服务接入 99

Apache ShenYu document

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-transport-netty4</artifactId>
<version>1.1.9</version>

</dependency>

<dependency>
<groupId>com.weibo</groupId>
<artifactId>motan-springsupport</artifactId>
<version>1.1.9</version>

</dependency>

• 重启你的网关服务。

10.9.2 Motan服务接入网关

可以参考：shenyu‐examples‐motan

• 在由 Motan构建的微服务中，引入如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-spring-boot-starter-client-motan</artifactId>
<version>${shenyu.version}</version>

</dependency>

在 Motan服务接口实现类的方法上加上注解 @ShenyuMotanClient，启动你的服务提供者，成功注
册后，在后台管理系统进入插件列表 -> rpc proxy -> motan，会看到自动注册的选择器和规则信
息。
示例：

@MotanService(export = "demoMotan:8002")
public class MotanDemoServiceImpl implements MotanDemoService {

@Override
@ShenyuMotanClient(path = "/hello")
public String hello(String name) {

return "hello " + name;
}

}

10.9. Motan服务接入 100

https://github.com/apache/incubator-shenyu/tree/master/shenyu-examples/shenyu-examples-motan

Apache ShenYu document

10.9.3 用户请求

可以通过 http的方式来请求你的 motan服务。Apache ShenYu网关需要有一个路由前缀，这个路由
前缀就是接入网关配置的 contextPath。比如：http://localhost:9195/motan/hello。

10.9. Motan服务接入 101

11
开发者文档

11.1 自定义 Filter

11.1.1 说明

• 本文介绍如何对 org.springframework.web.server.WebFliter进行扩展。

11.1.2 跨域支持

• 新增 org.apache.shenyu.web.filter.CrossFilter实现 WebFilter。

public class CrossFilter implements WebFilter {

private static final String ALLOWED_HEADERS = "x-requested-with, authorization,
Content-Type, Authorization, credential, X-XSRF-TOKEN,token,username,client";

private static final String ALLOWED_METHODS = "*";

private static final String ALLOWED_ORIGIN = "*";

private static final String ALLOWED_EXPOSE = "*";

private static final String MAX_AGE = "18000";

@Override
@SuppressWarnings("all")
public Mono<Void> filter(final ServerWebExchange exchange, final WebFilterChain

chain) {
ServerHttpRequest request = exchange.getRequest();
if (CorsUtils.isCorsRequest(request)) {

ServerHttpResponse response = exchange.getResponse();
HttpHeaders headers = response.getHeaders();
headers.add("Access-Control-Allow-Origin", ALLOWED_ORIGIN);

102

Apache ShenYu document

headers.add("Access-Control-Allow-Methods", ALLOWED_METHODS);
headers.add("Access-Control-Max-Age", MAX_AGE);
headers.add("Access-Control-Allow-Headers", ALLOWED_HEADERS);
headers.add("Access-Control-Expose-Headers", ALLOWED_EXPOSE);
headers.add("Access-Control-Allow-Credentials", "true");
if (request.getMethod() == HttpMethod.OPTIONS) {

response.setStatusCode(HttpStatus.OK);
return Mono.empty();

}
}
return chain.filter(exchange);

}
}

• 将 CrossFilter注册成为 Spring的 bean。

11.1.3 网关过滤 springboot健康检查

• 注意顺序，使用 @Order注解

@Component
@Order(-99)
public final class HealthFilter implements WebFilter {

private static final String[] FILTER_TAG = {"/actuator/health", "/health_check
"};

@Override
public Mono<Void> filter(@Nullable final ServerWebExchange exchange, @Nullable

final WebFilterChain chain) {
ServerHttpRequest request = Objects.requireNonNull(exchange).getRequest();
String urlPath = request.getURI().getPath();
for (String check : FILTER_TAG) {

if (check.equals(urlPath)) {
String result = JsonUtils.toJson(new Health.Builder().up().

build());
DataBuffer dataBuffer = exchange.getResponse().bufferFactory().

wrap(result.getBytes());
return exchange.getResponse().writeWith(Mono.just(dataBuffer));

}
}
return Objects.requireNonNull(chain).filter(exchange);

}
}

11.1. 自定义 Filter 103

Apache ShenYu document

11.1.4 继承 org.apache.shenyu.web.filter.AbstractWebFilter

• 新增一个类继承 AbstractWebFilter，并实现它的两个方法。

/**
* this is Template Method ,children Implement your own filtering logic.
*
* @param exchange the current server exchange
* @param chain provides a way to delegate to the next filter
* @return {@code Mono<Boolean>} result：TRUE (is pass)，and flow next filter；FALSE

(is not pass) execute doDenyResponse(ServerWebExchange exchange)
*/

protected abstract Mono<Boolean> doFilter(ServerWebExchange exchange,
WebFilterChain chain);

/**
* this is Template Method ,children Implement your own And response client.
*
* @param exchange the current server exchange.
* @return {@code Mono<Void>} response msg.
*/

protected abstract Mono<Void> doDenyResponse(ServerWebExchange exchange);

• doFilter 方法返回 Mono<true> 表示通过，反之则不通过，不通过的时候，会调用
doDenyResponse输出相关信息到前端。

11.2 插件扩展

11.2.1 说明

• 插件是 Apache ShenYu网关的核心执行者，每个插件在开启的情况下，都会对匹配的流量，进行
自己的处理。

• 在 Apache ShenYu网关里面，插件分为两类。
– 一类是单一职责的调用链，不能对流量进行自定义的筛选。
– 一类是能对匹配的流量，执行自己的职责调用链。

• 用户可以参考 shenyu‐plugin模块，新增自己的插件处理，如果有好的公用插件，可以向官网提交
pr。

11.2. 插件扩展 104

https://github.com/apache/incubator-shenyu/tree/master/shenyu-plugin

Apache ShenYu document

11.2.2 单一职责插件

• 引入如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-plugin-api</artifactId>
<version>${project.version}</version>

</dependency>

• 用户新增一个类 MyShenyuPlugin，直接实现 org.apache.shenyu.plugin.api.
ShenyuPlugin

public interface ShenyuPlugin {

/**
* Process the Web request and (optionally) delegate to the next
* {@code WebFilter} through the given {@link ShenyuPluginChain}.
*
* @param exchange the current server exchange
* @param chain provides a way to delegate to the next filter
* @return {@code Mono<Void>} to indicate when request processing is complete
*/

Mono<Void> execute(ServerWebExchange exchange, ShenyuPluginChain chain);

/**
* return plugin order .
* This attribute To determine the plugin execution order in the same type

plugin.
*
* @return int order
*/

int getOrder();

/**
* acquire plugin name.
* this is plugin name define you must Provide the right name.
* if you impl AbstractShenyuPlugin this attribute not use.
*
* @return plugin name.
*/

default String named() {
return "";

}

/**
* plugin is execute.
* if return true this plugin can not execute.
*

11.2. 插件扩展 105

Apache ShenYu document

* @param exchange the current server exchange
* @return default false.
*/

default Boolean skip(ServerWebExchange exchange) {
return false;

}
}

• 接口方法详细说明
– execute()方法为核心的执行方法，用户可以在里面自由的实现自己想要的功能。
– getOrder()指定插件的排序。
– named()指定插件的名称。
– skip()在特定的条件下，该插件是否被跳过。

• 注册成 Spring的 bean，参考如下，或者直接在实现类上加 @Component注解。

@Bean
public ShenyuPlugin myShenyuPlugin() {

return new MyShenyuPlugin();
}

11.2.3 匹配流量处理插件

• 引入如下依赖：

<dependency>
<groupId>org.apache.shenyu</groupId>
<artifactId>shenyu-plugin-base</artifactId>
<version>${project.version}</version>

</dependency>

• 新 增 一 个 类 CustomPlugin， 继 承 org.apache.shenyu.plugin.base.
AbstractShenyuPlugin

• 以下是参考：

/**
* This is your custom plugin.
* He is running in after before plugin, implement your own functionality.
* extends AbstractShenyuPlugin so you must user shenyu-admin And add related plug-

in development.
*
* @author xiaoyu(Myth)
*/

public class CustomPlugin extends AbstractShenyuPlugin {

11.2. 插件扩展 106

Apache ShenYu document

/**
* return plugin order .
* The same plugin he executes in the same order.
*
* @return int
*/

@Override
public int getOrder() {

return 0;
}

/**
* acquire plugin name.
* return you custom plugin name.
* It must be the same name as the plug-in you added in the admin background.
*
* @return plugin name.
*/

@Override
public String named() {

return "shenyu";
}

/**
* plugin is execute.
* Do I need to skip.
* if you need skip return true.
*
* @param exchange the current server exchange
* @return default false.
*/

@Override
public Boolean skip(final ServerWebExchange exchange) {

return false;
}

/**
* this is Template Method child has Implement your own logic.
*
* @param exchange exchange the current server exchange
* @param chain chain the current chain
* @param selector selector
* @param rule rule
* @return {@code Mono<Void>} to indicate when request handling is complete
*/

@Override
protected abstract Mono<Void> doExecute(ServerWebExchange exchange,

ShenyuPluginChain chain, SelectorData selector, RuleData rule) {

11.2. 插件扩展 107

Apache ShenYu document

LOGGER.debug(".......... function plugin start..............");
/*
* Processing after your selector matches the rule.
* rule.getHandle() is you Customize the json string to be processed.
* for this example.
* Convert your custom json string pass to an entity class.
*/
final String ruleHandle = rule.getHandle();

final Test test = GsonUtils.getInstance().fromJson(ruleHandle, Test.class);

/*
* Then do your own business processing.
* The last execution chain.execute(exchange).
* Let it continue on the chain until the end.
*/
System.out.println(test.toString());
return chain.execute(exchange);

}
}

• 详细讲解：
– 继承该类的插件，插件会进行选择器规则匹配。
– 首先在 shenyu-admin后台管理系统–>基础配置–>插件管理中，新增一个插件，注意名称
与你自定义插件的 named()方法要一致。

– 重新登陆 shenyu-admin后台，可以看见刚新增的插件，然后就可以进行选择器规则匹配。
– 在规则中，有个 handler字段，是自定义处理数据，在 doExecute()方法中，通过 final
String ruleHandle = rule.getHandle();获取，然后进行你的操作。

• 注册成 Spring的 bean，参考如下或者直接在实现类上加 @Component注解。

@Bean
public ShenyuPlugin customPlugin() {

return new CustomPlugin();
}

11.2.4 订阅你的插件数据，进行自定义的处理

• 新增一个类 PluginDataHandler，实现 org.apache.shenyu.plugin.base.handler.
PluginDataHandler

public interface PluginDataHandler {

/**
* Handler plugin.

11.2. 插件扩展 108

Apache ShenYu document

*
* @param pluginData the plugin data
*/

default void handlerPlugin(PluginData pluginData) {
}

/**
* Remove plugin.
*
* @param pluginData the plugin data
*/

default void removePlugin(PluginData pluginData) {
}

/**
* Handler selector.
*
* @param selectorData the selector data
*/

default void handlerSelector(SelectorData selectorData) {
}

/**
* Remove selector.
*
* @param selectorData the selector data
*/

default void removeSelector(SelectorData selectorData) {
}

/**
* Handler rule.
*
* @param ruleData the rule data
*/

default void handlerRule(RuleData ruleData) {
}

/**
* Remove rule.
*
* @param ruleData the rule data
*/

default void removeRule(RuleData ruleData) {
}

/**
* Plugin named string.

11.2. 插件扩展 109

Apache ShenYu document

*
* @return the string
*/

String pluginNamed();

}

• 注意 pluginNamed()要和你自定义的插件名称相同。
• 注册成 Spring的 bean，参考如下或者直接在实现类上加 @Component注解。

@Bean
public PluginDataHandler pluginDataHandler() {

return new PluginDataHandler();
}

11.3 文件上传下载

11.3.1 说明

• 本文主要介绍 Apache ShenYu的文件上传下载的支持。

11.3.2 文件上传

• 默认限制文件大小为 10M。
• 如果想修改，在启动服务的时候，使用--file.size = 30，为 int类型。
• 你之前怎么上传文件，还是怎么上传。

11.3.3 文件下载

• Apache ShenYu支持流的方式进行下载，之前的接口怎么写的，现在还是怎么写，根本不需要变。

11.4 正确获取 IP与Host

11.4.1 说明

• 本文是说明，如果网关前面有一层 nginx的时候，如何获取正确的 ip与端口。
• 获取正确的之后，在插件以及选择器中，可以根据 ip，与 host来进行匹配。

11.3. 文件上传下载 110

Apache ShenYu document

11.4.2 默认实现

• 在 Apache ShenYu 网 关 自 带 实 现 为：org.apache.shenyu.web.forward.
ForwardedRemoteAddressResolver。

• 它需要你在 nginx设置 X-Forwarded-For，以便来获取正确的 ip与 host。

11.4.3 扩展实现

• 新增一个类 CustomRemoteAddressResolver，实现 org.apache.shenyu.plugin.api.
RemoteAddressResolver

public interface RemoteAddressResolver {

/**
* Resolve inet socket address.
*
* @param exchange the exchange
* @return the inet socket address
*/

default InetSocketAddress resolve(ServerWebExchange exchange) {
return exchange.getRequest().getRemoteAddress();

}

}

• 把你新增的实现类注册成为 spring的 bean，如下

@Bean
public RemoteAddressResolver customRemoteAddressResolver() {

return new CustomRemoteAddressResolver();
}

11.5 自定义返回结果

11.5.1 说明

• 本文介绍基于 Apache ShenYu网关返回自定义的数据格式。
• 网关需要统一的返回格式，如果需要自己定义格式，可以进行扩展。

11.5. 自定义返回结果 111

Apache ShenYu document

11.5.2 默认实现

• 默认的实现为 org.apache.shenyu.plugin.api.result.DefaultShenyuResult

• 返回的数据格式如下：

public class DefaultShenyuEntity implements Serializable {

private static final long serialVersionUID = -2792556188993845048L;

private Integer code;

private String message;

private Object data;

}

• 返回的 json格式如下：

{
"code": -100, //返回码,
"message": " 您的参数错误, 请检查相关文档!", //提示字段
"data": null // 具体的数据

}

11.5.3 扩展

• 新增一个类 CustomShenyuResult 实现 org.apache.shenyu.plugin.api.result.
ShenyuResult

public interface ShenyuResult<T> {

/**
* Success t.
*
* @param code the code
* @param message the message
* @param object the object
* @return the t
*/

T success(int code, String message, Object object);

/**
* Error t.
*
* @param code the code
* @param message the message

11.5. 自定义返回结果 112

Apache ShenYu document

* @param object the object
* @return the t
*/

T error(int code, String message, Object object);
}

• 其中泛型 T为自定义的数据格式，返回它就好。
• 把你新增的实现类注册成为 Spring的 bean，如下：

@Bean
public ShenyuResult customShenyuResult() {

return new CustomShenyuResult();
}

11.6 自定义 sign插件检验算法

11.6.1 说明

• 用户可以自定义签名认证算法来实现验证。

11.6.2 扩展

• 默认的实现为 org.apache.shenyu.plugin.sign.service.DefaultSignService。
• 新增一个类 CustomSignService实现 org.apache.shenyu.plugin.api.SignService。

public interface SignService {

/**
* Sign verify pair.
*
* @param exchange the exchange
* @return the pair
*/

Pair<Boolean, String> signVerify(ServerWebExchange exchange);
}

• Pair中返回 true，表示验证通过，为 false的时候，会把 String中的信息输出到前端。
• 把新增的实现类注册成为 Spring的 bean，如下

@Bean
public SignService customSignService() {

return new CustomSignService();
}

11.6. 自定义 sign插件检验算法 113

Apache ShenYu document

11.7 多语言Http客户端

11.7.1 说明

• 本文主要讲解其他语言的 http服务如何接入网关。
• 如何自定义开发 shenyu-http-client。

11.7.2 自定义开发

• 请求方式：POST
• 请 求 路 径：http://shenyu-admin/shenyu-client/springmvc-register ， 其 中
shenyu-admin表示为 admin后台管理系统的 ip + port。

• 请求参数：Apache ShenYu网关默认的需要参数，通过 body里面传入，json类型。

{
"appName": "xxx", //应用名称 必填
"context": "/xxx", //请求前缀 必填
"path": "xxx", //路径需要唯一 必填
"pathDesc": "xxx", //路径描述
"rpcType": "http", //rpc 类型 必填
"host": "xxx", //服务 host 必填
"port": xxx, //服务端口 必填
"ruleName": "xxx", //可以同 path 一样 必填
"enabled": "true", //是否开启
"registerMetaData": "true" //是否需要注册元数据

}

11.8 线程模型

11.8.1 说明

• 本文主要介绍 Apache ShenYu的线程模型，以及各种场景的使用。

11.8.2 IO与Work线程

• Apache ShenYu内置依赖 spring-webflux，而其底层是使用的是 netty，这一块主要是使用
的 netty线程模型。

11.7. 多语言Http客户端 114

Apache ShenYu document

11.8.3 业务线程

• 默认使用调度线程来执行。
• 默认使用固定的线程池来执行，其线程数为 cpu * 2 + 1。

11.8.4 切换类型

• reactor.core.scheduler.Schedulers。
• 可以使用 -Dshenyu.scheduler.type=fixed这个是默认。设置其他的值就会使用弹性线程池
来执行 Schedulers.elastic()。

• 可以使用 -Dshenyu.work.threads = xx来指定线程数量，默认为 cpu * 2 + 1，最小为 16
个线程。

11.9 ShenYu性能优化

11.9.1 说明

• 本文主要介绍如何对 Apache ShenYu进行优化。

11.9.2 本身消耗

• Apache ShenYu本身所有的操作，都是基于 JVM内存来匹配，本身消耗时间大概在 1-3ms左右。

11.9.3 底层 Netty调优

• Apache ShenYu内置依赖 spring-webflux而其底层是使用的 netty。
• 我们可以自定义 netty的相关参数来对 Apache ShenYu进行优化，以下是示例：

@Bean
public NettyReactiveWebServerFactory nettyReactiveWebServerFactory() {

NettyReactiveWebServerFactory webServerFactory = new
NettyReactiveWebServerFactory();

webServerFactory.addServerCustomizers(new EventLoopNettyCustomizer());
return webServerFactory;

}

private static class EventLoopNettyCustomizer implements NettyServerCustomizer {

@Override
public HttpServer apply(final HttpServer httpServer) {

return httpServer
.tcpConfiguration(tcpServer -> tcpServer

11.9. ShenYu性能优化 115

Apache ShenYu document

.runOn(LoopResources.create("shenyu-netty", 1, DEFAULT_IO_
WORKER_COUNT, true), false)

.selectorOption(ChannelOption.SO_REUSEADDR, true)

.selectorOption(ChannelOption.ALLOCATOR,
PooledByteBufAllocator.DEFAULT)

.option(ChannelOption.TCP_NODELAY, true)

.option(ChannelOption.ALLOCATOR, PooledByteBufAllocator.
DEFAULT));

}
}

• 这个类在 shenyu-bootstrap中已经内置，在压测的时候，可以根据自己的需求来进行优化设置。
• 业务线程模型，请参考：线程模型。

11.9. ShenYu性能优化 116

12
版本发布

12.1 2.3.0

12.1.1 soul-admin

• Sign插件新增是否开启 APP认证的字段。
• 优化 Divide插件，使用通用的插件模板。
• 插件处理管理中添加默认值和规则检查。
• 新增资源管理模块，使用户可以添加插件，调整菜单和按钮资源等。
• 新增菜单和数据的权限控制。
• 新增支持H2来存储数据。

12.1.2 soul-bootstrap

• 新增 Tars插件，支持 tars RPC协议。
• 新增 Sofa插件，支持 sofa RPC协议。
• 新增 GRPC插件，全面支持 GRPC协议。
• 新增 sentinel插件
• 新增 Resilience4j插件
• 新增 context‐path插件，支持自定义的 context path

• 新增 Dubbo插件的表单提交
• 新增插件管理功能
• 新增 dist包模块
• 添加测试用例，覆盖率达到百分之七十。
• 新增 zookeeper作为注册中心的方式接入 soul网关。

117

Apache ShenYu document

• 新增 Nacos作为注册中心的方式接入 soul网关。
• 新增 Consul作为注册中心的方式接入 soul网关。
• 新增 Etcd作为注册中心的方式接入 soul网关。

12.2 2.2.0

• 完全的插件化架构设计，插件热插拔。
• 完整支持 dubbo所有版本，alibaba‐dubbo，apache‐dubbo。
• 支持 dubbo泛化调用，多参数，复杂参数接口。
• 增强monitor插件，移除 influxdb支持，新增内存，CPU，QPS，TPS，响应迟延等metrics，支持
接入 Prometheus。

• springCloud插件支持 eureka与 nacos二种注册中心。
• waf插件增强,支持黑白名单，以及混合模式。
• 抽离Hystrix熔断功能，独立成插件支持。
• 修护 Zookeeper数据同步方式 bug，新增 nacos同步数据方式。
• 多种 soul‐client支持，提供传统 spring，以及 springboot等方式接入。
• 优化 soul‐admin后台控制界面。
• 负载均衡算法 bug修护。
• 修护大文件上传时候的 bug。

12.2. 2.2.0 118

13
下载

13.1 最新版本

Apache ShenYu (incubating)的发布版包括源码包及其对应的二进制包。
由于下载内容分布在镜像服务器上，所以下载后应该进行 GPG或 SHA‐512校验，以此来保证内容没有被
篡改。

13.1.1 Apache ShenYu (incubating) - 版本: 2.4.0 (发布日期: Aug 8,
2021)

• 源码 [zip] [asc] [sha512]

• ShenYu‐Admin二进制包 [tar] [asc] [sha512]

• ShenYu‐Bootstrap二进制包 [tar] [asc] [sha512]

13.2 校验版本

PGP签名文件
使用 PGP或 SHA签名验证下载文件的完整性至关重要。可以使用 GPG或 PGP验证 PGP签名。请下载
KEYS以及发布的 asc签名文件。建议从主发布目录而不是镜像中获取这些文件。

gpg -i KEYS

或者

pgpk -a KEYS

或者

pgp -ka KEYS

119

https://www.apache.org/dyn/closer.cgi/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-src.zip
https://downloads.apache.org/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-src.zip.asc
https://downloads.apache.org/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-src.zip.sha512
https://www.apache.org/dyn/closer.cgi/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-admin-bin.tar.gz
https://downloads.apache.org/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-admin-bin.tar.gz.asc
https://downloads.apache.org/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-admin-bin.tar.gz.sha512
https://www.apache.org/dyn/closer.cgi/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-bootstrap-bin.tar.gz
https://downloads.apache.org/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-bootstrap-bin.tar.gz.asc
https://downloads.apache.org/incubator/shenyu/2.4.0/apache-shenyu-incubating-2.4.0-bootstrap-bin.tar.gz.sha512
https://downloads.apache.org/incubator/shenyu/KEYS

Apache ShenYu document

要验证二进制文件或源代码，您可以从主发布目录下载相关的 asc文件，并按照以下指南进行操作。

gpg --verify apache-shenyu-********.asc apache-shenyu-*********

或者

pgpv apache-shenyu-********.asc

或者

pgp apache-shenyu-********.asc

13.3 PDF

Apache ShenYu提供了打包下载的文档 PDF，供使用者、开发者查阅。
• 中文
• English

13.3. PDF 120

	什么是 Apache ShenYu
	功能
	架构图
	脑图
	模块
	关于
	设计文档
	ShenYu Admin数据结构
	插件、选择器和规则
	资源权限
	数据权限
	元数据
	字典管理

	数据同步原理
	背景
	原理分析
	Zookeeper同步原理
	WebSocket同步原理
	Http长轮询同步原理
	Nacos同步原理
	Etcd同步原理
	Consul同步原理

	客户端接入原理
	设计原理
	注册中心客户端
	注册中心服务端
	Http注册原理
	Zookeeper注册原理

	Etcd注册原理
	Consul注册原理
	Nacos注册原理
	SPI扩展

	流量控制
	插件
	选择器和规则
	流量筛选

	SPI
	注册中心扩展
	监控中心扩展
	负载均衡扩展
	RateLimiter扩展
	匹配方式扩展
	条件参数扩展
	条件策略扩展

	运维部署
	本地启动
	环境准备
	下载编译代码

	二进制包部署
	启动 Apache ShenYu Admin
	启动 Apache ShenYu Bootstrap

	docker部署
	启动Apache ShenYu Admin
	启动Apache ShenYu Bootstrap

	k8s部署
	一. 使用 h2 作为数据库
	1. 创建 nameSpace 和 configMap
	2. 部署 shenyu-admin
	3. 部署 shenyu-bootstrap

	二. 使用 mysql 作为数据库
	1. 创建 nameSpace和 configMap
	2. 创建 endpoint 代理外部 mysql
	4. 部署 shenyu-admin
	3. 部署 shenyu-bootstrap

	helm部署
	自定义搭建网关
	启动Apache ShenYu Admin
	搭建自己的网关（推荐）

	快速开始
	Http快速开始
	环境准备
	运行shenyu-examples-http项目
	测试Http请求

	Dubbo快速开始
	环境准备
	运行shenyu-examples-dubbo项目
	测试

	Spring Cloud快速开始
	环境准备
	运行shenyu-examples-springcloud
	测试Http请求

	Sofa快速开始
	环境准备
	运行shenyu-examples-sofa项目
	测试

	gRPC快速开始
	环境准备
	运行 shenyu-examples-grpc 项目
	简单测试
	流式调用

	Tars快速开始
	环境准备
	运行shenyu-examples-tars项目
	测试

	Motan快速开始
	环境准备
	运行shenyu-examples-motan项目
	测试Http请求

	用户文档
	数据同步配置
	WebSocket同步配置（默认方式，推荐）
	Zookeeper同步配置
	Http长轮询同步配置
	Nacos同步配置
	Etcd 同步配置
	Consul 同步配置

	客户端接入配置
	Http方式注册配置
	shenyu-admin配置
	shenyu-client配置

	Zookeeper方式注册配置
	shenyu-admin配置
	shenyu-client配置

	Etcd方式注册配置
	shenyu-admin配置
	shenyu-client配置

	Consul方式注册配置
	shenyu-admin配置
	shenyu-client配置

	Nacos方式注册配置
	shenyu-admin配置
	shenyu-client配置

	Http服务接入
	在网关中引入 divide 插件
	Http请求接入网关（springMvc 体系用户）
	Http请求接入网关（其他语言，非springMvc体系）
	用户请求

	Dubbo服务接入
	说明
	在网关中引入 dubbo 插件
	dubbo 服务接入网关
	dubbo 插件设置
	接口注册到网关
	dubbo用户请求及参数说明
	服务治理
	Http –> 网关 –> Dubbo Provider

	Spring Cloud服务接入
	在网关中引入 springCloud 插件
	SpringCloud服务接入网关
	用户请求

	Sofa服务接入
	在网关中引入 sofa 插件
	sofa服务接入网关
	sofa 插件设置
	接口注册到网关
	sofa用户请求及参数说明

	gRPC服务接入
	在网关中引入 grpc 插件
	gRPC服务接入网关
	用户请求

	Tars服务接入
	在网关中引入 tars 插件
	Tars服务接入网关
	用户请求

	Motan服务接入
	在网关中引入 motan 插件
	Motan服务接入网关
	用户请求

	开发者文档
	自定义Filter
	说明
	跨域支持
	网关过滤 springboot健康检查
	继承 org.apache.shenyu.web.filter.AbstractWebFilter

	插件扩展
	说明
	单一职责插件
	匹配流量处理插件
	订阅你的插件数据，进行自定义的处理

	文件上传下载
	说明
	文件上传
	文件下载

	正确获取IP与Host
	说明
	默认实现
	扩展实现

	自定义返回结果
	说明
	默认实现
	扩展

	自定义sign插件检验算法
	说明
	扩展

	多语言Http客户端
	说明
	自定义开发

	线程模型
	说明
	IO与Work线程
	业务线程
	切换类型

	ShenYu 性能优化
	说明
	本身消耗
	底层Netty调优

	版本发布
	2.3.0
	soul-admin
	soul-bootstrap

	2.2.0

	下载
	最新版本
	Apache ShenYu (incubating) - 版本: 2.4.0 (发布日期: Aug 8, 2021)

	校验版本
	PDF

